This repository contains a TensorFlow implementation of Capsule Graph Neural Network (CapsGNN).
The implementation of dynamic routing refers to the [code]
networkx 2.2
numpy 1.16.2
scipy 1.2.1
argparse 1.1
tensorflow 1.12.1
- We provide the preprocessing program to generate specific experimental data format. The default raw data format should be
.gexf
(avalaible at [gexf Dataset]). Each line of the label file represents a graph with the format
xxx.gexf label
To generate experimental data format:
$ python3 dataset_utils/preprocessing.py --dataset_input_dir graph_gexf/ENZYMES --output_data_dir data_plk --pickle_v 3 --x_fold 10 --gen_split_file True
- All the hyperparameters can be set in
config.py
and the training procedure can be executed through:
$ python3 main.py --dataset_dir data_plk/ENZYMES --epochs 3000 --lambda_val 0.5
If you find CapsGNN is useful for your research, please consider citing the following paper:
@inproceedings{xinyi2018capsule,
title={Capsule Graph Neural Network},
author={Zhang Xinyi and Lihui Chen},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=Byl8BnRcYm},
}
Please send any questions you might have about the codes and/or the algorithm to xinyi001@e.ntu.edu.sg.