This repository contains the code for the following paper.
Pelee: A Real-Time Object Detection System on Mobile Devices (ICLR 2018 workshop track)
The code is based on the SSD framework.
If you find this work useful in your research, please consider citing:
@article{wang2018pelee,
title={Pelee: A Real-Time Object Detection System on Mobile Devices},
author={Wang, Robert J and Li, Xiang and Ao, Shuang and Ling, Charles X},
journal={arXiv preprint arXiv:1804.06882},
year={2018}
}
The table below shows the results on PASCAL VOC 2007 test.
Method | mAP (%) | FPS (Intel i7) | FPS (iPhone 6s) | FPS (iPhone 8) | # parameters |
---|---|---|---|---|---|
YOLOv2-288 | 69.0 | 1.0 | - | - | 58.0M |
DSOD300_smallest | 73.6 | 1.3 | - | - | 5.9M |
Tiny-YOLOv2 | 57.1 | 2.4 | 9.3 | 23.8 | 15.9M |
SSD+MobileNet | 68.0 | 6.1 | 16.1 | 22.8 | 5.8M |
Pelee | 70.9 | 6.7 | 17.1 | 23.6 | 5.4M |
Method | 07+12 | 07+12+coco |
---|---|---|
SSD300 | 77.2 | 81.2 |
SSD+MobileNet | 68 | 72.7 |
Pelee | 70.9 | 76.4 |
The table below shows the results on COCO test-dev2015.
Method | mAP@[0.5:0.95] | mAP@0.5 | mAP@0.75 | Computational Cost (MACs) | # parameters |
---|---|---|---|---|---|
SSD300 | 25.1 | 43.1 | 25.8 | 34,360 M | 34.30 M |
YOLOv2-416 | 21.6 | 44.0 | 19.2 | 17,500 M | 67.43 M |
SSD+MobileNet | 18.8 | - | - | 1,200 M | 6.80 M |
Pelee | 22.4 | 38.3 | 22.9 | 1,290 M | 5.98 M |
-
Install SSD (https://github.com/weiliu89/caffe/tree/ssd) following the instructions there, including: (1) Install SSD caffe; (2) Download PASCAL VOC 2007 and 2012 datasets; and (3) Create LMDB file. Make sure you can run it without any errors.
-
Download the pretrained PeleeNet model. By default, we assume the model is stored in $CAFFE_ROOT/models/
-
Clone this repository and create a soft link to $CAFFE_ROOT/examples
git clone https://github.com/Robert-JunWang/Pelee.git
ln -sf `pwd`/Pelee $CAFFE_ROOT/examples/pelee
-
Train a Pelee model on VOC 07+12:
cd $CAFFE_ROOT python examples/pelee/train_voc.py
-
Evaluate the model:
cd $CAFFE_ROOT python examples/pelee/eval_voc.py
-
PASCAL VOC 07+12: Download (20.3M)
-
PASCAL VOC 07+12+coco: Download (20.3M)
-
MS COCO: Download (21M)