/GaitGraph

Official repository for GaitGraph: Graph Convolutional Network for Skeleton-Based Gait Recognition

Primary LanguagePythonMIT LicenseMIT

GaitGraph

This repository contains the PyTorch code for:

GaitGraph: Graph Convolutional Network for Skeleton-Based Gait Recognition

Torben Teepe, Ali Khan, Johannes Gilg, Fabian Herzog, Stefan Hörmann

arxiv BibTeX PWC

Pipeline

Quick Start

Prerequisites

  • Python >= 3.6
  • CUDA >= 10

First, create a virtual environment or install dependencies directly with:

pip3 install -r requirements.txt

Data preparation

The extraction of the pose data from CASIA-B can either run the commands bellow or download the preprocessed data using:

cd data
sh ./download_data.sh

Optional: If you choose to run the preprocessing, download the dataset and run the following commands.

# Download required weights
cd models
sh ./download_weights.sh

# Copy extraction script
# <PATH_TO_CASIA-B> should be something like: /home/ ... /datasets/CASIA_Gait_Dataset/DatasetB
cd ../data
cp extract_frames.sh <PATH_TO_CASIA-B>

cd <PATH_TO_CASIA-B>
mkdir frames
sh extract_frames.sh
cd frames
find . -type f -regex ".*\.jpg" -print | sort | grep -v bkgrd > ../casia-b_all_frames.csv
cp ../casia-b_all_frames.csv <PATH_TO_REPO>/data

cd <PATH_TO_REPO>/src
export PYTHONPATH=${PWD}:$PYTHONPATH

cd preparation
python3 prepare_detection.py <PATH_TO_CASIA-B> ../../data/casia-b_all_frames.csv ../../data/casia-b_detections.csv
python3 prepare_pose_estimation.py  <PATH_TO_CASIA-B> ../../data/casia-b_detections.csv ../../data/casia-b_pose_coco.csv
python3 split_casia-b.py ../../data/casia-b_pose_coco.csv --output_dir ../../data

Train

To train the model you can run the train.py script. To see all options run:

cd src
export PYTHONPATH=${PWD}:$PYTHONPATH

python3 train.py --help

Check experiments/1_train_*.sh to see the configurations used in the paper.

Optionally start the tensorboard with:

tensorboard --logdir=save/casia-b_tensorboard 

Evaluation

Evaluate the models using evaluate.py script. To see all options run:

python3 evaluate.py --help

Main Results

Top-1 Accuracy per probe angle excluding identical-view cases for the provided models on CASIA-B dataset.

0 18 36 54 72 90 108 126 144 162 180 mean
NM#5-6 85.3 88.5 91 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7
BG#1-2 75.8 76.7 75.9 76.1 71.4 73.9 78 74.7 75.4 75.4 69.2 74.8
CL#1-2 69.6 66.1 68.8 67.2 64.5 62 69.5 65.6 65.7 66.1 64.3 66.3

The pre-trained model is available here.

Licence & Acknowledgement

GaitPose itself is released under the MIT License (see LICENSE).

The following parts of the code are borrowed from other projects. Thanks for their wonderful work!

Citing GaitGraph

If you use GaitGraph, please use the following BibTeX entry.

@misc{teepe2021gaitgraph,
      title={GaitGraph: Graph Convolutional Network for Skeleton-Based Gait Recognition}, 
      author={Torben Teepe and Ali Khan and Johannes Gilg and Fabian Herzog and Stefan H\"ormann and Gerhard Rigoll},
      year={2021},
      eprint={2101.11228},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}