/Belajar-Image-Classification

Belajar Image Classification

Primary LanguageJupyter Notebook

Belajar Image Classification

  • Pertemuan 1 : Basic Neural Network [View]
    • Intro to Neural Network (Basic Concept, Layer, Activation & Loss Function)
    • Train Simple Neural Network using Pytorch on MNIST Dataset
    • Model Evaluation (Accuracy, Precision, Recall & Confusion Matrix)

  • Pertemuan 2 : Neural Network Optimization [View]
    • Experiment with Neural Network (Adding Layer & Change Activation)
    • Intro to Neural Network Optimizer
    • Experiment with Neural Network (Change Optimizer & Learning Rate Decay)
    • Intro to Dropout Layer & Training Overfitting
    • Experiment Handling Overfitting using Dropout Layer

  • Pertemuan 3 : Basic Convolution Neural Network (CNN) [View]
    • Intro to Convolution Neural Network
    • Train Simple CNN using Pytorch on MNIST Dataset
    • Experiment Adding Dropout Layer to CNN
    • Intro to Batch Normalization Layer
    • Experiment Adding Batch Normalization Layer to CNN

  • Pertemuan 4 : CNN with Attention Mechanism [View]
    • Intro to Attention Mechanism
    • Intro to Channel Attention : Squeeze and Excitation Block
    • Intro to Spatial Attention : Self Attention & Multi-head Attention
    • Experiment to recalibrate feature map using Squeeze and Excitation Block in Pytorch
    • Experiment to recalibrate feature map using Self Attension in Pytorch

  • Pertemuan 5 : Intro to CNN based Image Classification Model [View]
    • Intro Deep Learning Image Classification Model (GoogLeNet, Resnet, ResNeXt, EfficientNet, ViT, etc.)
    • Experiment with Residual Block of ResNet Model Architecture
    • Intro to PyTorch Hub & ResNet-18 Pretrained Model

  • Pertemuan 6 : Transfer Learning on CNN based Image Classification Model [View]
    • Transfer Learning ResNet-34 using Apple2Orange Dataset
    • Transfer Learning ResNet-152 using Apple2Orange Dataset
    • Transfer Learning SE-ResNeXt-101 using Apple2Orange Dataset