a Dataset should be in COCO format
b Unzip dataset to the path that correspond with the path in file json in dataset
c The name that be changed should correspond with the name in file json in dataset
!python train.py \
--data-path /path/to/data/ \
-b batch_size \
-j num_workers \
--epochs num_epochs \
--print-freq num_iters_for_log \
--resume '/path/to/checkpoint/' \
--output-dir /path/for/output/result/ \
--model model_name (default: deeplabv3_mobilenet_v3_large) \
--aux-loss \
--wd weight_decay_coef \
This folder contains reference training scripts for semantic segmentation. They serve as a log of how to train specific models, as provide baseline training and evaluation scripts to quickly bootstrap research.
All models have been trained on 8x V100 GPUs.
You must modify the following flags:
--data-path=/path/to/dataset
--nproc_per_node=<number_of_gpus_available>
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet50 --aux-loss
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet101 --aux-loss
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet50 --aux-loss
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet101 --aux-loss
torchrun --nproc_per_node=8 train.py --dataset coco -b 4 --model lraspp_mobilenet_v3_large --wd 0.000001