/ncnn-benchmark

The benchmark of ncnn that is a high-performance neural network inference framework optimized for the mobile platform

Primary LanguageCMake

ncnn-benchmark

The benchmark of ncnn that is a high-performance neural network inference framework optimized for the mobile platform https://github.com/Tencent/ncnn

Hardware Platform

Device System CPU-Family CPU-Num Freq
RK3288 Android 5.1 Cortex-A17 4 1.8GHz
Qualcomm820 Android 6.0 Kryo 2+2 2.15GHz/1.6GHz
Mi5 Android 7.1.2 Kryo 2+2 1.8GHz/1.3GHz
Hi3519 Linux 3.18.20 Cortex-A17 1 1.2GHz

Runtime Environment

1.Using the cpu working in performance model.  

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

2.Loop a hundred times to take the minimum value of Inference time-consuming.

Result

Devices Models Input Size Single-Thread(ms) Multi-Threads(ms)
RK3288 SqueezeNet v1.1 227x227x3 194 73
MobileNet v1.0 224x224x3 324 115
      ResNet18 224x224x3 759 250
      ResNet50 224x224x3 1855 810
      GoogleNet v1.0 224x224x3 701 231
      VGG16 224x224x3 3449 1506
MobileNet-SSD 300x300x3 652 245
Qualcomm820 SqueezeNet v1.1 227x227x3 91 47
MobileNet v1.0 224x224x3 150 70
ResNet18 224x224x3 355 152
      ResNet50 224x224x3 735 309
GoogleNet v1.0 224x224x3 371 161
VGG16 224x224x3 1928 769
      MobileNet-SSD 300x300x3 330 160
Mi5 SqueezeNet v1.1 227x227x3 98 51
MobileNet v1.0 224x224x3 189 79
Hi3519 SqueezeNet v1.1 227x227x3 397 null
MobileNet v1.0 224x224x3 666 null
      ResNet18 224x224x3 1608 null
      GoogleNet v1.0 224x224x3 1410 null

User Guide

1. Build the benchmark demo

build demo for Linux-x86

./build.sh linux

build demo for Android

./build.sh android

2. How to run the executable files.

If you build demo for linux success,and want to run the benchmark demo.

$ cp ./models/classification/squeezenet.param  ./build-linux/install/bin/
$ cp ./models/classification/squeezenet.bin  ./build-linux/install/bin/
$ cd ./build-linux/install/bin/
$ ./ncnn_classify squeezenet.param squeezenet.bin 227 227 1 1

Demo running params:

./ncnn_classify <ncnn-param-file> <ncnn-model-bin-file> <input-width> <input-height> <loops-num> <threads-num>

Example:

bug1989@ubuntu:~/ncnn-benchmark/build-linux/install/bin$ ./ncnn_classify squeezenet.param squeezenet.bin 227 227 10 2
--- NCNN Classification Benchmark Demo --- 22:41:09 Dec 26 2017
Loops   : 10
Threads : 2
Time cost: Max 263.338 ms, Min 247.209 ms, Avg 252.652 ms.

The End

Thanks to ncnn's author nihui and all the contributors for sharing this framework.