Error when --render the humanoid
Closed this issue · 1 comments
Bacis info my system is Ubuntu 20.8, GPU 3080, NVCC 11.6, gcc/g++ 7.5.0. Other setting is same as the env.
After I train the train_shac.py humanoid, I want to render it via ucd
My command is
python train_shac.py --cfg ./cfg/shac/humanoid.yaml --checkpoint ./logs/SNUHumanoid/shac/40/best_policy.pt --play --render
However, it cannot work for unexpected reason:
Using cached kernels
Setting seed: 0
~/anaconda3/envs/shac/lib/python3.8/site-packages/gym/spaces/box.py:127: UserWarning: WARN: Box bound precision lowered by casting to float32
logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
28 27
Start joint_q: [0.0, 1.35, 0.0, -0.7071067811865475, -0.0, -0.0, 0.7071067811865476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
~DiffRL/dflex/dflex/model.py:1687: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at /opt/conda/conda-bld/pytorch_1646755903507/work/torch/csrc/utils/tensor_new.cpp:210.)
m.shape_transform = torch.tensor(transform_flatten_list(self.shape_transform), dtype=torch.float32, device=adapter)
num_act = 21
num_envs = 1
num_actions = 21
num_obs = 76
Sequential(
(0): Linear(in_features=76, out_features=256, bias=True)
(1): ELU(alpha=1.0)
(2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(3): Linear(in_features=256, out_features=128, bias=True)
(4): ELU(alpha=1.0)
(5): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(6): Linear(in_features=128, out_features=21, bias=True)
(7): Identity()
)
Parameter containing:
tensor([-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,
-1., -1., -1., -1., -1., -1., -1.], device='cuda:0',
requires_grad=True)
Sequential(
(0): Linear(in_features=76, out_features=128, bias=True)
(1): ELU(alpha=1.0)
(2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(3): Linear(in_features=128, out_features=128, bias=True)
(4): ELU(alpha=1.0)
(5): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(6): Linear(in_features=128, out_features=1, bias=True)
)
Traceback (most recent call last):
File "train_shac.py", line 114, in
traj_optimizer.play(cfg_train)
~/DiffRL/algorithms/shac.py", line 561, in play
self.run(cfg['params']['config']['player']['games_num'])
~/anaconda3/envs/shac/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
~/DiffRL/algorithms/shac.py", line 377, in run
mean_policy_loss, mean_policy_discounted_loss, mean_episode_length = self.evaluate_policy(num_games = num_games, deterministic = not self.stochastic_evaluation)
~/anaconda3/envs/shac/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
~/DiffRL/algorithms/shac.py", line 317, in evaluate_policy
obs = self.obs_rms.normalize(obs)
~/DiffRL/utils/running_mean_std.py", line 56, in normalize
result = (arr - self.mean) / torch.sqrt(self.var + 1e-5)
RuntimeError: The size of tensor a (76) must match the size of tensor b (53) at non-singleton dimension 1
Do you have any idea to fix that
Hi, sorry for the confusion. You need to use ./cfg/shac/snu_humanoid.yaml
for the muscle-actuated humanoid. The humanoid.yaml
is for the torque-driven humanoid.