A pattern recognition project for predicting stock return from historical data using multiple machine learning models and techniques.
See the slide Here.
Dataset: S&P500, Yahoo Finance - yfinance
- Data Preprocessing
- Feature Engineering
- Technical Indicators
- Relative Strength Index (RSI)
- Bollinger Bands
- Average True Range (ATR)
- Moving Average Convergence/Divergence (MACD)
- Momentum
- Lagged Return
- Technical Indicators
- Data Splitting
- Training and Testing Set: 2014 - 2023 (9y)
- Trading Evaluation: 2023 - 2024 (1y)
- Model
- Baseline: Naive Forecast
- Neural Network: Architecture 1 (Timeseries) & 2 (TS+Exogenous)
- Long Short Term Memory (LSTM)
- Gated Recurrent Unit (GRU)
- Classical: Regression & Classification
- Linear regression
- Logistic regression
- Support Vector
- Random Forest
- Extreme Gradient Boosting
- K-Nearest Neighbor
- Hyper parameters Tuning
- Grid Search
- Random Search
- Trading
- Baseline Strategy: Buy and Hold
- Equal Weight portfolio
- Sharpe Ratio
- Analysis
- Feature Importance
- warboo (Veeliw)
- markthitrin (Mark)
- pupipatsk (Get)
- Nacnano (Nac)