S-Lab, Nanyang Technological University
Paper | Project Page | Video
We propose FreeU, a method that substantially improves diffusion model sample quality at no costs: no training, no additional parameter introduced, and no increase in memory or sampling time.
📖 For more visual results, go checkout our project page
def Fourier_filter(x, threshold, scale):
# FFT
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W)).cuda()
crow, ccol = H // 2, W //2
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
x_freq = x_freq * mask
# IFFT
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
return x_filtered
class Free_UNetModel(UNetModel):
"""
:param b1: backbone factor of the firt stage block of decoder.
:param b2: backbone factor of the second stage block of decoder.
:param s1: skip factor of the firt stage block of decoder.
:param s2: skip factor of the second stage block of decoder.
"""
def __init__(
self,
b1,
b2,
s1,
s2,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.b1 = b1
self.b2 = b2
self.s1 = s1
self.s2 = s2
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
hs_ = hs.pop()
# --------------- FreeU code -----------------------
# Only operate on the first two stages
if h.shape[1] == 1280:
h[:,:640] = h[:,:640] * self.b1
hs_ = Fourier_filter(hs_, threshold=1, scale=self.s1)
if h.shape[1] == 640:
h[:,:320] = h[:,:320] * self.b2
hs_ = Fourier_filter(hs_, threshold=1, scale=self.s2)
# ---------------------------------------------------------
h = th.cat([h, hs_], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
b1: 1.2, b2: 1.4, s1: 0.9, s2: 0.2
b1: 1.1, b2: 1.2, s1: 0.9, s2: 0.2
b1: 1.1, b2: 1.2, s1: 0.6, s2: 0.4
When trying additional parameters, consider the following ranges:
- b1: 1 ≤ b1 ≤ 1.2
- b2: 1.2 ≤ b2 ≤ 1.6
- s1: s1 ≤ 1
- s2: s2 ≤ 1
If you find FreeU useful for your work please cite:
@article{Si2023FreeU,
author = {Chenyang Si, Ziqi Huang, Yuming Jiang, Ziwei Liu},
title = {FreeU: Free Lunch in Diffusion U-Net},
journal = {arXiv},
year = {2023},
}
Distributed under the MIT License. See LICENSE
for more information.