This is the PyTorch implementation of paper: Frequency-aware divide-and-conquer for efficient real noise removal (FADN).
pip install -r requirement.txt
Random crop SIDD for training and extract test set for testing.
python Crop_SIDD.py
python SIDD_test_extract.py
Extract DND for evaluation.
python extract_DND.py
Extract NAM for evaluation.
python extract_NAM.py
python python train.py -opt options/train/FADN.yml
Pretrained model are given in ./models/
cd codes
python test_Real.py -opt options/test/test_FADN.yml
If you have any questions, please contact huangyunlu@bupt.edu.cn.