/TARC

Official repo for "Task Agnostic Representation Consolidation: a Self-supervised based Continual Learning Approach"

Primary LanguagePythonMIT LicenseMIT

Task Agnostic Representation Consolidation: A Self-supervised based Continual Learning Approach

Official Repository for for CoLLAs 2022 paper "Task Agnostic Representation Consolidation: A Self-supervised based Continual Learning Approach"

This repo is built on top of the Mammoth continual learning framework

Setup

  • Use python main.py to run experiments.
  • Use argument --load_best_args to use the best hyperparameters for each of the evaluation setting from the paper.

Examples:

## How to run?
python --model er --dataset seq-cifar10 --img_size 32  --buffer_size 200 --load_best_args --train_ssl --ssl_train_percentage 0.9 --tensorboard --multitask --ce_weight 1 --rot_weight 1 --notes 'ER + TARC'

python --model si --dataset rot-mnist --img_size 28 --load_best_args --train_ssl --ssl_train_percentage 0.6 --tensorboard  --multitask --ce_weight 1 --rot_weight 1 --notes 'SI + TARC'

python --model ewc_on --dataset rot-mnist --img_size 28 --load_best_args --train_ssl --ssl_train_percentage 0.6 --tensorboard  --multitask --ce_weight 1 --rot_weight 1  --notes 'oEWC + TARC'

+ For multi-objective learning:
--multitask --ce_weight 1 --rot_weight 1

+ For task-agnostic learning:
--train_ssl --ssl_train_percentage 0.9

Class-Il / Task-IL settings

  • Sequential CIFAR-10
  • Sequential CIFAR-100
  • Sequential Tiny ImageNet
  • Sequential STL-10

Domain-IL settings

  • Rotated MNIST

General Continual Learning setting

  • MNIST-360

Requirements

  • torch==1.7.0

  • torchvision==0.9.0

  • quadprog==0.1.7

Cite Our Work

If you find the code useful in your research, please consider citing our paper:

@InProceedings{pmlr-v199-bhat22a,
  title = 	 {Task Agnostic Representation Consolidation: a Self-supervised based Continual Learning Approach},
  author =       {Bhat, Prashant Shivaram and Zonooz, Bahram and Arani, Elahe},
  booktitle = 	 {Proceedings of The 1st Conference on Lifelong Learning Agents},
  pages = 	 {390--405},
  year = 	 {2022},
  editor = 	 {Chandar, Sarath and Pascanu, Razvan and Precup, Doina},
  volume = 	 {199},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {22--24 Aug},
  publisher =    {PMLR},
  pdf = 	 {https://proceedings.mlr.press/v199/bhat22a/bhat22a.pdf},
  url = 	 {https://proceedings.mlr.press/v199/bhat22a.html},
}