python-blpapi

Simple wrapper for blpapi library to Pandas. Resembles BDH, BDP and BDS Bloomberg-Excel functions for historical data. Can only be used in a logged Bloomberg Terminal. Requires blpapi.

To install blpapi, run in cmd

python -m pip install --index-url=https://bcms.bloomberg.com/pip/simple/ blpapi

Examples

BDP

  • Securities and fields must be passed as lists.
  • Overrides (if any) must be passed as dict.
  • For a complete list of fields and overrides, use FLDS when loading a security in Bloomberg.
  • Output is a DataFrame. Tickers as index, fields as column names.
from bloomberg import BDP

#Securities and fields must be passed as a list
securities = ['AAPL US Equity','C US Equity']

#For a complete list of available fields, use FLDS when loading a security in Bloomberg.
fields = ['NAME', 'GICS_INDUSTRY_NAME', 'CRNCY_ADJ_PX_LAST']

df_bdp = BDP(securities, fields)

#Example with overrides
override = {'EQY_FUND_CRNCY':'EUR'}
df_bdp_override = BDP(securities, fields, override)

df_bdp

Index NAME GICS_INDUSTRY_NAME CRNCY_ADJ_PX_LAST
AAPL US Equity APPLE INC Technology Hardware, Storage & 157.44
C US Equity CITIGROUP INC Banks 54.87

df_bdp_override

Index NAME GICS_INDUSTRY_NAME CRNCY_ADJ_PX_LAST
AAPL US Equity APPLE INC Technology Hardware, Storage & 144.321
C US Equity CITIGROUP INC Banks 50.2979

BDH

  • Securities and fields must be passed as lists.
  • Overrides (if any) must be passed as dict.
  • For a complete list of fields and overrides, use FLDS when loading a security in Bloomberg.
  • Output is a multiindex DataFrame. Tickers as first row index, fields as second row index. Column index contains dates.
  • Complete list of settings can be found in the "BLPAPI Core Developer Guide", section "15.4. BDH(): HISTORICAL “END-OF-DAY” DATA (STATIC)".
import datetime
from bloomberg import BDH

#Securities and fields must be passed as a list
securities = ['AAPL US Equity','C US Equity']

#For a complete list of available fields, use FLDS when loading a security in Bloomberg.
fields = ['PX_LAST', 'PX_VOLUME']

# Dates are used in %Y%m%d format (e.g. 20220306 for March 6th 2022).
# Suggested use is with datetime:
date_ini = datetime.date(2021,6,1).strftime("%Y%m%d")
date_end = datetime.date(2021,6,30).strftime("%Y%m%d")

#Settings
# Complete list of settings can be found in the "BLPAPI Core 
# Developer Guide", section "15.4. BDH(): HISTORICAL “END-OF-DAY” DATA (STATIC)"
settings = {"periodicityAdjustment":"ACTUAL",
            "periodicitySelection":"DAILY",
            "startDate": date_ini,
            "endDate": date_end,
            "nonTradingDayFillOption":"NON_TRADING_WEEKDAYS",
            "nonTradingDayFillMethod":"PREVIOUS_VALUE",
            } 

df_bdh = BDH(securities, fields, settings)

df_bdh.head(5)

Ticker AAPL US Equity AAPL US Equity C US Equity C US Equity
Field PX_LAST PX_VOLUME PX_LAST PX_VOLUME
date
2021-06-01 124.28 67637118.0 79.76 15450506.0
2021-06-02 125.06 59278862.0 79.86 15285588.0
2021-06-03 123.54 76229170.0 79.63 22255785.0
2021-06-04 125.89 75169343.0 79.49 13806958.0
2021-06-07 125.90 71057550.0 79.31 12670074.0

BDS

  • Securities must be passed as a list. Only accepts 1 field.
  • Overrides (if any) must be passed as dict.
  • For a complete list of fields and overrides, use FLDS when loading a security in Bloomberg.
  • If a single security is passed, output is a DataFrame. Otherwise, output is a dictionary containing DataFrames. Indices depend on securities and fields consulted.
import datetime
from bloomberg import BDS

#Securities and fields must be passed as a list:
securities = ['YCSW0042 Index', 'YCSW0141 Index']

# Only accepts 1 field.
# For a complete list of available fields, use FLDS when loading a security in Bloomberg.
fields = ['CURVE_TENOR_RATES']

df_bds = BDS(securities, fields)

#Example with overrides:
# Dates are used in %Y%m%d format (e.g. 20220306 for March 6th 2022).
# Suggested use is with datetime:
date = datetime.date(2021,6,12).strftime("%Y%m%d")
override = {'CURVE_DATE':date}
df_bds_override = BDS(securities, fields, override) 

df_bds['YCSW0042 Index'].head(5)

Tenor Ticker Ask Yield Mid Yield Bid Yield Last Update
0 1D FEDL01 Index 0.080 0.080 0.080 2022-03-08
1 1W USSO1Z BGN Curncy 0.155 0.133 0.111 2022-03-08
2 2W USSO2Z BGN Curncy 0.237 0.230 0.224 2022-03-08
3 3W USSO3Z BGN Curncy 0.275 0.265 0.255 2022-03-08
4 1M USSOA BGN Curncy 0.291 0.287 0.284 2022-03-08

df_bds_override['YCSW0042 Index'].head(5)

Tenor Ticker Ask Yield Mid Yield Bid Yield Last Update
0 1D FEDL01 Index 0.060 0.060 0.060 2021-06-11
1 1W USSO1Z BGN Curncy 0.071 0.067 0.063 2021-06-11
2 2W USSO2Z BGN Curncy 0.073 0.070 0.067 2021-06-11
3 3W USSO3Z BGN Curncy 0.075 0.067 0.059 2021-06-11
4 1M USSOA BGN Curncy 0.074 0.070 0.066 2021-06-11

BDHIB: BDH Intraday Bar

  • Security and event must be passed as strings. Only accepts 1 security and event.
  • Outputs a DataFrame object. Index are dates and times.
  • Columns are:
    • OPEN: Open price of bar.
    • HIGH: Highest price of bar.
    • LOW: Lowest price of bar.
    • CLOSE: Last price of bar.
    • TICKS: Number of ticks in bar.
    • VOLUME: Volume traded in bar.
  • Settings (optional): Complete list and descripion can be found in the "BLPAPI Core Developer Guide", section "15.6. BDH()/BRB(): INTRADAY BAR DATA (STATIC/SUBSCRIPTION)".
import datetime
from bloomberg import BDHIB

#Security and Event must be passed as strings.
security = "USDPEN Curncy"

#Event can be TRADE, BID or ASK.
eventType = "TRADE"

#lenght of each time-bar in minutes. Must be an integer between 1 and 1,440 (24 hours).
interval = 5

#Start and end points must be passed as datetime objects.
startDateTime = datetime.datetime(2022, 5, 25, 0, 0, 0)
endDateTime = datetime.datetime(2022, 5, 28, 0, 0, 0)

#gapFillInitialBar (optional): If true, forces an initial bar on startDateTime with last price avaiable. Default is False.
gapFillInitialBar = True

#settings (optional) must be passed as dict. Complete list and descripion of settings can be found in the BLPAPI Core Developer Guide,
#section 15.6. BDH()/BRB(): INTRADAY BAR DATA (STATIC/SUBSCRIPTION).
# settings = {'adjustmentSplit':True,
#             'adjustmentAbnormal':True,
#             'adjustmentNormal': True,
#             'adjustmentFollowDPDF': True}

df_bdhib = BDHIB(security, eventType, interval, startDateTime, endDateTime, gapFillInitialBar)

df_bdhib.head(5)

OPEN HIGH LOW CLOSE TICKS VOLUME
2022-05-25 00:00:00 3.7039 3.7039 3.7039 3.7039 0 0
2022-05-25 09:05:00 3.7075 3.7075 3.7030 3.7030 5 0
2022-05-25 09:10:00 3.7018 3.7051 3.7000 3.7025 12 0
2022-05-25 09:15:00 3.7025 3.7025 3.7001 3.7001 3 0
2022-05-25 09:20:00 3.7001 3.7026 3.6986 3.7026 11 0