GreesyGuard

About

GreesyGuard is a text moderation model trained on Gitpod to identify and filter inappropriate content. GreesyGuard created with the help of claude-3.5-sonnet

Installation Steps

  1. Clone the repository:

    git clone https://github.com/Nicat-dcw/greesyguard.git
    cd greesyguard
  2. Install the required packages:

    pip install -r requirements.txt
  3. Prepare your dataset:

    Ensure your dataset contains fields tweet and label.

  4. Train the model:

    python train.py
  5. Run inference:

    python inference.py

Benchmark

We used the dataset for training the model for benchmark

HumanEval SG Prompt
GreesyGuard-2 42% 89.7
Text-mod-007 16% 85.6
ShieldGemma(2b) No Data No Data

Changes in this version

  • Increased Vocab size
  • Tokenizer (p50>cl100k)
  • Max length (128>2048)
  • Learning rate (2e-5)
  • Hugginface's datasets support
  • Better learning handling
  • API Support (OpenAI)

Next version: 10 stars