/onnc-wasm

Primary LanguageC++

ONNC WebAssembly Backend

Implement an ONNC Backend that can compile ONNX model to WebAssembly module and run on WebAssembly platform.

Prerequisites

  • git
  • docker

Quick start

Clone wasm-backend

# Clone ONNC-Wasm
git clone https://github.com/ONNC/onnc-wasm.git
cd onnc-wasm
# Setup SSVM
git submodule add https://github.com/second-state/SSVM ssvm
cd ssvm && git checkout b5785ed6f8f24de2afa54ec6c28904e7607a0f12
cd ..

Enter docker

./scripts/start_docker_env.sh

The start-up message will show some tips in tne console.

If you want to show the message again, type:

cat /etc/motd

Wasm-backend directory will be mounted as "/home/onnc/workspace". Files and directories are shared between host machine and docker container here.

Get ONNX model

You can get ONNX models and related test data from these links

Download these files and put into the models folder of wasm-backend. You can download either inside or outside docker container.

The links are referenced from ONNX model zoo

In this guide, we take AlexNet as example:

cd /home/onnc/workspace/models && wget https://s3.amazonaws.com/download.onnx/models/opset_7/bvlc_alexnet.tar.gz
  1. Extract the tar file
cd /home/onnc/workspace/models && tar -zxvf bvlc_alexnet.tar.gz
  1. Build ONNX model and ONNC runtime libraries
../scripts/build.sh ssvm bvlc_alexnet/model.onnx
  1. Convert input Protobuf file to Tensor file

ONNX model zoo provides Protobuf files to test each model. We need to convert Protobuf into Tensor file by pb2t tool

../tools/pb2t bvlc_alexnet/test_data_set_0/input_0.pb bvlc_alexnet/test_data_set_0/input_0.tensor
  1. Run model with input Tensor file
../scripts/run.sh ssvm out-ssvm model bvlc_alexnet/test_data_set_0/input_0.tensor output.data

The result will be output.data as raw binary data

  1. [OPTIONAL] Convert output to human-readable format and check inference result
python3 ../scripts/numpy2text.py output.data output.txt
cat output.txt

Object detection with TinyYolo v1 model

We provide TinyYolo v1 model in the Docker image for object detection

  1. Build ONNX model and ONNC runtime libraries
cd /home/onnc/workspace/models && ../scripts/build.sh ssvm /home/onnc/tiny_yolov1/model.onnx
  1. Convert input JPEG file to Tensor file

You can use your JPEG image file with jpg2t tool to convert into Tensor file. It can also crop image to 448*448 as TinyYolo v1 input

Take test image file as example

./out-ssvm/bin/jpg2t /home/onnc/tiny_yolov1/test_data_set_0/input_0.jpg input.tensor 448 448
  1. Run model with input Tensor file
../scripts/run.sh ssvm out-ssvm/ model input.tensor output.data

The result will be output.data as raw binary data

  1. Detect result and combined it with input image file into output image file
./out-ssvm/bin/detection output.data /home/onnc/tiny_yolov1/test_data_set_0/input_0.jpg output.jpg

Result:

Advanced command

Build ONNX model and related libraries

You have to prepare:

  • An ONNX model file (.onnx)
./scripts/build.sh <mode> <onnx_file> [output_dir]

Arguments

  • mode : Build mode
  • onnx_file : Input file in ONNX format
  • output_dir : [Optional] Where built files will be

Available modes

  • native Build ONNX model and ONNC runtime library in native C environment.
  • ssvm Build ONNX model and ONNC runtime library for SSVM in native environment.

Example

./scripts/build.sh native alexnet.onnx

Run ONNX model

You have to prepare:

  • An input file in protobuf format (.pb) or jpeg format (.jpg)
  • Already finished Build step

1-1. Convert protobuf input file to input tensor file

tools/pb2t <input_file>.pb <tensor_file>.tensor

1-2. Convert jpeg input file to input tensor file

<output_dir>/jpg2t <input_file>.jpg <tensor_file>.tensor

2. Execute ./scripts/run.sh script

./scripts/run.sh <mode> <output_dir> <model_name> <tensor_file> [output_file]
Arguments
  • mode : Run mode
  • output_dir : Compiled model file (In native binary or wasm)
  • model_name : Model name without .onnx suffix
  • tensor_file : Input tensor file (In .tensor)
  • [output_file] : [OPTIONAL] Where output file store
Available modes
  • native Build ONNX model and ONNC runtime library in native C environment.
  • ssvm Build ONNX model and ONNC runtime library for SSVM in native environment.
NOTICE

In SSVM mode, <tensor_file> should be inside working directory or its descendant directories

Example

./scripts/run.sh ssvm out-ssvm alexnet input.tensor

3. [TinyYoloV1 only] Draw detection result to JPEG file

<output_dir>/bin/detection <result_file> <image_file> <output_file>
Arguments
  • output_dir : Compiled model file (In native binary or wasm)
  • result_file : The inference result file
  • image_file : Original input JPEG file
  • output_file : Output JPEG file

Example

./out-ssvm/bin/detection result.numpy input.jpg out.jpg

See Wiki for more informations

Supporting operators

Opset: 7 (ONNX v1.3.0)

Float type

  • add
  • averagepool
  • batchnormalization
  • concat
  • conv
  • gemm
  • globalaveragepool
  • lrn
  • maxpool
  • mul
  • relu
  • reshape
  • softmax
  • sum
  • transpose
  • unsqueeze

Int8 type

  • add
  • batchnormalization
  • conv
  • maxpool
  • mul
  • relu