/PhoCoLens

PhoCoLens: Photorealistic and Consistent Reconstruction in Lensless Imaging

Primary LanguagePython

PhocoLens: Photorealistic and Consistent Reconstruction in Lensless Imaging

License arXiv Project Page Visitors

Teaser

Official PyTorch implementation of the NeurIPS 2024 paper "PhocoLens: Photorealistic and Consistent Reconstruction in Lensless Imaging"

๐Ÿ“Œ Table of Contents

๐ŸŒŸ Introduction

Lensless imaging systems offer advantages in size, cost, and field-of-view, but typically produce low-quality images. PhocoLens addresses this by decomposing the reconstruction problem into two domains: the range space (measured signals) and null space (lost information). Our approach delivers photorealistic reconstructions with unprecedented quality for lensless imaging.

๐Ÿ” Method Overview

PhocoLens employs a novel two-stage reconstruction pipeline:

  1. Range-Null Space Decomposition: We mathematically divide the reconstruction problem into recoverable (range space) and lost (null space) information.

  2. Spatially-Varying Deconvolution Network (SVDeconv): Our first stage recovers high-fidelity content from the range space using a specialized deconvolution network.

  3. Null Space Content Recovery (NullSpaceDiff): The second stage uses conditional diffusion models to recover lost details while maintaining consistency with first-stage output.

Method

๐Ÿš€ Getting Started

Prerequisites

  • NVIDIA GPU with at least 12GB VRAM (24GB recommended for training)
  • CUDA 11.7+
  • Python 3.9+
  • PyTorch 1.13+

Installation

# Clone the repository
git clone https://github.com/OpenImagingLab/PhoCoLens.git
cd PhoCoLens

# Create conda environment
conda create -n phocolens python=3.9
conda activate phocolens

# Install core dependencies
pip install -r requirements.txt

๐Ÿ“ฅ Data Preparation

PhocoLens supports two lensless imaging datasets:

  1. PhlatCam: Download Page
  2. DiffuserCam: Download Page

Expected directory structure:

phocolens
โ”œโ”€โ”€ data
โ”‚   โ”œโ”€โ”€ phlatcam
โ”‚   โ”‚   โ”œโ”€โ”€ orig
โ”‚   โ”‚   โ”œโ”€โ”€ phase_psf
โ”‚   โ”‚   โ”œโ”€โ”€ text_files
โ”‚   โ”‚   โ””โ”€โ”€ imagenet_caps_384_12bit_Feb_19
โ”‚   โ””โ”€โ”€ diffusercam
โ”‚       โ”œโ”€โ”€ psf.tiff
โ”‚       โ”œโ”€โ”€ dataset_train.csv
โ”‚       โ”œโ”€โ”€ dataset_test.csv
โ”‚       โ”œโ”€โ”€ diffuser_images
โ”‚       โ””โ”€โ”€ ground_truth_lensed

Preparing PhlatCam Dataset

# Copy ground truth data
python tools/copy_gt.py

๐Ÿ‹๏ธ Training

Stage 1: Range Space Reconstruction (SVDeconv)

Navigate to the SVDeconv directory:

cd SVDeconv

# Create soft links to data
ln -s ../data data


# Generate range space data for training
python tools/decode_and_sim_rgb.py --psf_path data/phlatcam/phase_psf/psf.npy \
    --obj_path data/phlatcam/flatnet/train/gts \
    --save_path data/phlatcam/train/decoded_sim_captures

# Generate range space data for validation
python tools/decode_and_sim_rgb.py --psf_path data/phlatcam/phase_psf/psf.npy \
    --obj_path data/phlatcam/train/gts \
    --save_path data/phlatcam/val/decoded_sim_captures

Single-GPU Training

# Train with default configuration
python train.py with ours_meas_1280_1408_decoded_sim_svd -p

Multi-GPU Training

# Train with 8 GPUs
python -m torch.distributed.launch --nproc_per_node=8 --use_env \
    train.py with ours_meas_1280_1408_decoded_sim_svd distdataparallel=True -p

You can modify training parameters in config.py.

Process Intermediate Results

After Stage 1 training, generate inputs for Stage 2:

python val.py with ours_meas_1280_1408_decoded_sim_svd -p
python val.py with ours_meas_1280_1408_decoded_sim_svd infer_train -p
cd ..
python tools/data_process.py

Stage 2: Null Space Recovery (NullSpaceDiff)

cd NullSpaceDiff

Download the StableSR pre-trained model to the ckpts folder first.

# Multi-GPU Training
python main.py --train \
    --base configs/NullSpaceDiff/phlatcam_decoded_sim_multi_T_512.yaml \
    --gpus 0,1,2,3,4,5,6,7, \
    --name svd_nullspace_diff

๐Ÿงช Inference

Stage 1 (SVDeconv)

cd SVDeconv
python val.py with ours_meas_1280_1408_decoded_sim_svd -p

Stage 2 (NullSpaceDiff)

cd NullSpaceDiff
python ./scripts/sr_val_ddpm_lensless.py \
    --init-img path/to/stage1/output \
    --outdir path/to/save/results \
    --ckpt path/to/trained/model \
    --n_samples 5 \
    --ddpm_steps 200

๐Ÿ“œ Citation

If you find our work useful in your research, please consider citing:

@article{cai2024phocolens,
  title={Phocolens: Photorealistic and consistent reconstruction in lensless imaging},
  author={Cai, Xin and You, Zhiyuan and Zhang, Hailong and Gu, Jinwei and Liu, Wentao and Xue, Tianfan},
  journal={Advances in Neural Information Processing Systems},
  volume={37},
  pages={12219--12242},
  year={2024}
}

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.