/IDM-VTON

[ECCV2024] IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild

Primary LanguagePython

IDM-VTON: Improving Diffusion Models for Authentic Virtual Try-on in the Wild

This is the official implementation of the paper "Improving Diffusion Models for Authentic Virtual Try-on in the Wild".

Star ⭐ us if you like it!


teaser2  teaser 

TODO LIST

  • demo model
  • inference code
  • training code

Requirements

git clone https://github.com/yisol/IDM-VTON.git
cd IDM-VTON

conda env create -f environment.yaml
conda activate idm

Data preparation

VITON-HD

You can download VITON-HD dataset from VITON-HD.

After download VITON-HD dataset, move vitonhd_test_tagged.json into the test folder, and move vitonhd_train_tagged.json into the train folder.

Structure of the Dataset directory should be as follows.


train
|-- image
|-- image-densepose
|-- agnostic-mask
|-- cloth
|-- vitonhd_train_tagged.json

test
|-- image
|-- image-densepose
|-- agnostic-mask
|-- cloth
|-- vitonhd_test_tagged.json

DressCode

You can download DressCode dataset from DressCode.

We provide pre-computed densepose images and captions for garments here.

We used detectron2 for obtaining densepose images, refer here for more details.

After download the DressCode dataset, place image-densepose directories and caption text files as follows.

DressCode
|-- dresses
    |-- images
    |-- image-densepose
    |-- dc_caption.txt
    |-- ...
|-- lower_body
    |-- images
    |-- image-densepose
    |-- dc_caption.txt
    |-- ...
|-- upper_body
    |-- images
    |-- image-densepose
    |-- dc_caption.txt
    |-- ...

Training

Preparation

Download pre-trained ip-adapter for sdxl(IP-Adapter/sdxl_models/ip-adapter-plus_sdxl_vit-h.bin) and image encoder(IP-Adapter/models/image_encoder) here.

git clone https://huggingface.co/h94/IP-Adapter

Move ip-adapter to ckpt/ip_adapter, and image encoder to ckpt/image_encoder

Start training using python file with arguments,

accelerate launch train_xl.py \
    --gradient_checkpointing --use_8bit_adam \
    --output_dir=result --train_batch_size=6 \
    --data_dir=DATA_DIR

or, you can simply run with the script file.

sh train_xl.sh

Inference

VITON-HD

Inference using python file with arguments,

accelerate launch inference.py \
    --width 768 --height 1024 --num_inference_steps 30 \
    --output_dir "result" \
    --unpaired \
    --data_dir "DATA_DIR" \
    --seed 42 \
    --test_batch_size 2 \
    --guidance_scale 2.0

or, you can simply run with the script file.

sh inference.sh

DressCode

For DressCode dataset, put the category you want to generate images via category argument,

accelerate launch inference_dc.py \
    --width 768 --height 1024 --num_inference_steps 30 \
    --output_dir "result" \
    --unpaired \
    --data_dir "DATA_DIR" \
    --seed 42 
    --test_batch_size 2
    --guidance_scale 2.0
    --category "upper_body" 

or, you can simply run with the script file.

sh inference.sh

Start a local gradio demo

Download checkpoints for human parsing here.

Place the checkpoints under the ckpt folder.

ckpt
|-- densepose
    |-- model_final_162be9.pkl
|-- humanparsing
    |-- parsing_atr.onnx
    |-- parsing_lip.onnx

|-- openpose
    |-- ckpts
        |-- body_pose_model.pth
    

Run the following command:

python gradio_demo/app.py

Acknowledgements

Thanks ZeroGPU for providing free GPU.

Thanks IP-Adapter for base codes.

Thanks OOTDiffusion and DCI-VTON for masking generation.

Thanks SCHP for human segmentation.

Thanks Densepose for human densepose.

Star History

Star History Chart

Citation

@article{choi2024improving,
  title={Improving Diffusion Models for Authentic Virtual Try-on in the Wild},
  author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
  journal={arXiv preprint arXiv:2403.05139},
  year={2024}
}

License

The codes and checkpoints in this repository are under the CC BY-NC-SA 4.0 license.