⚡ Building applications with LLMs through composability, with Rust! ⚡
This is the Rust language implementation of LangChain.
-
LLMs
-
Embeddings
-
VectorStores
-
Chain
-
Agents
-
Tools
- Serpapi/Google
- Wolfram/Math
- Command line
- Text2Speech
-
Semantic Routing
-
Document Loaders
-
PDF
use futures_util::StreamExt; async fn main() { let path = "./src/document_loaders/test_data/sample.pdf"; let loader = LoPdfLoader::from_path(path).expect("Failed to create PdfLoader"); let docs = loader .load() .await .unwrap() .map(|d| d.unwrap()) .collect::<Vec<_>>() .await; }
-
Pandoc
use futures_util::StreamExt; async fn main() { let path = "./src/document_loaders/test_data/sample.docx"; let loader = PandocLoader::from_path(InputFormat::Docx.to_string(), path) .await .expect("Failed to create PandocLoader"); let docs = loader .load() .await .unwrap() .map(|d| d.unwrap()) .collect::<Vec<_>>() .await; }
-
HTML
use futures_util::StreamExt; use url::Url; async fn main() { let path = "./src/document_loaders/test_data/example.html"; let html_loader = HtmlLoader::from_path(path, Url::parse("https://example.com/").unwrap()) .expect("Failed to create html loader"); let documents = html_loader .load() .await .unwrap() .map(|x| x.unwrap()) .collect::<Vec<_>>() .await; }
-
CSV
use futures_util::StreamExt; async fn main() { let path = "./src/document_loaders/test_data/test.csv"; let columns = vec![ "name".to_string(), "age".to_string(), "city".to_string(), "country".to_string(), ]; let csv_loader = CsvLoader::from_path(path, columns).expect("Failed to create csv loader"); let documents = csv_loader .load() .await .unwrap() .map(|x| x.unwrap()) .collect::<Vec<_>>() .await; }
-
Git commits
use futures_util::StreamExt; async fn main() { let path = "/path/to/git/repo"; let git_commit_loader = GitCommitLoader::from_path(path).expect("Failed to create git commit loader"); let documents = csv_loader .load() .await .unwrap() .map(|x| x.unwrap()) .collect::<Vec<_>>() .await; }
-
Source code
let loader_with_dir = SourceCodeLoader::from_path("./src/document_loaders/test_data".to_string()) .with_dir_loader_options(DirLoaderOptions { glob: None, suffixes: Some(vec!["rs".to_string()]), exclude: None, }); let stream = loader_with_dir.load().await.unwrap(); let documents = stream.map(|x| x.unwrap()).collect::<Vec<_>>().await;
-
This library heavily relies on serde_json
for its operation.
First, ensure serde_json
is added to your Rust project.
cargo add serde_json
Then, you can add langchain-rust
to your Rust project.
cargo add langchain-rust
cargo add langchain-rust --features sqlite
Download additional sqlite_vss libraries from https://github.com/asg017/sqlite-vss
cargo add langchain-rust --features postgres
cargo add langchain-rust --features surrealdb
cargo add langchain-rust --features qdrant
Please remember to replace the feature flags sqlite
, postgres
or surrealdb
based on your
specific use case.
This will add both serde_json
and langchain-rust
as dependencies in your Cargo.toml
file. Now, when you build your project, both dependencies will be fetched and compiled, and will be available for use in your project.
Remember, serde_json
is a necessary dependencies, and sqlite
, postgres
and surrealdb
are optional features that may be added according to project needs.
use langchain_rust::{
chain::{Chain, LLMChainBuilder},
fmt_message, fmt_placeholder, fmt_template,
language_models::llm::LLM,
llm::openai::{OpenAI, OpenAIModel},
message_formatter,
prompt::HumanMessagePromptTemplate,
prompt_args,
schemas::messages::Message,
template_fstring,
};
#[tokio::main]
async fn main() {
//We can then initialize the model:
// If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
// let open_ai = OpenAI::default()
// .with_config(
// OpenAIConfig::default()
// .with_api_key("<your_key>"),
// ).with_model(OpenAIModel::Gpt35.to_string());
let open_ai = OpenAI::default().with_model(OpenAIModel::Gpt35.to_string());
//Once you've installed and initialized the LLM of your choice, we can try using it! Let's ask it what LangSmith is - this is something that wasn't present in the training data so it shouldn't have a very good response.
let resp = open_ai.invoke("What is rust").await.unwrap();
println!("{}", resp);
// We can also guide it's response with a prompt template. Prompt templates are used to convert raw user input to a better input to the LLM.
let prompt = message_formatter![
fmt_message!(Message::new_system_message(
"You are world class technical documentation writer."
)),
fmt_template!(HumanMessagePromptTemplate::new(template_fstring!(
"{input}", "input"
)))
];
//We can now combine these into a simple LLM chain:
let chain = LLMChainBuilder::new()
.prompt(prompt)
.llm(open_ai.clone())
.build()
.unwrap();
//We can now invoke it and ask the same question. It still won't know the answer, but it should respond in a more proper tone for a technical writer!
match chain
.invoke(prompt_args! {
"input" => "Quien es el escritor de 20000 millas de viaje submarino",
})
.await
{
Ok(result) => {
println!("Result: {:?}", result);
}
Err(e) => panic!("Error invoking LLMChain: {:?}", e),
}
//If you want to prompt to have a list of messages you could use the `fmt_placeholder` macro
let prompt = message_formatter![
fmt_message!(Message::new_system_message(
"You are world class technical documentation writer."
)),
fmt_placeholder!("history"),
fmt_template!(HumanMessagePromptTemplate::new(template_fstring!(
"{input}", "input"
))),
];
let chain = LLMChainBuilder::new()
.prompt(prompt)
.llm(open_ai)
.build()
.unwrap();
match chain
.invoke(prompt_args! {
"input" => "Who is the writer of 20,000 Leagues Under the Sea, and what is my name?",
"history" => vec![
Message::new_human_message("My name is: luis"),
Message::new_ai_message("Hi luis"),
],
})
.await
{
Ok(result) => {
println!("Result: {:?}", result);
}
Err(e) => panic!("Error invoking LLMChain: {:?}", e),
}
}