/AutoCCS

Automated Collision Cross Section calculation software for ion mobility spectrometry-mass spectrometry

Primary LanguagePythonBSD 2-Clause "Simplified" LicenseBSD-2-Clause

AutoCCS

Automated Collision Cross Section calculation software for ion mobility-mass spectrometry

Main features

AutoCCS supports the following platforms and methods:

How to install AutoCCS

Use conda environment (Recommended)

Please install conda and create an environment from an environment.yml file. More details about managing the conda environment can be found on the Managing environments.

conda env create -f environment.yml

And then activate the new conda environment autoccs.

conda activate autoccs

Use pip

Install python(>3.7) [link] and use pip as follows to install dependencies.

pip install -r requirements.txt

Tutorial with demo data

In this tutorial, we demonstrated the CCS determination using AutoCCS for the Agilent tune-mix samples in three different platforms: stepped-field DTIMS-MS, single-field RapidFire-DTIMS-MS, SLIM-based IMS.

Demo dataset is publicly available at MassIVE (Dataset ID: MSV000085979)

For sake of readability, the input parameters are split over multiple lines. When using the command line, however, all parameters should be included as a single line.

Stepped-Field DTIMS-MS

python -u autoCCS.py
  --target_list_file data/SteppedField-DTIMS/TargetList.csv
  --config_file data/SteppedField-DTIMS/autoCCS_config.xml
  --framemeta_files "data/SteppedField-DTIMS/ImsMetadata/*.txt"
  --feature_files "data/SteppedField-DTIMS/Features_csv/*.csv"
  --output_dir data/SteppedField-DTIMS/Results/
  --threshold_n_fields 5
  --mode multi &> "data/SteppedField-DTIMS/LogFiles/multi.log"

Single-Field RapidFire-DTIMS-MS

python autoCCS.py
  --config_file data/SingleField-RapidFire-DTIMS/autoCCS_config.xml
  --framemeta_files "data/SingleField-RapidFire-DTIMS/ImsMetadata/*.txt"
  --feature_files "data/SingleField-RapidFire-DTIMS/Features_csv/*.csv"
  --calibrant_file data/SingleField-RapidFire-DTIMS/TuneMix-CCS.txt
  --output_dir data/SingleField-RapidFire-DTIMS/Results/
  --tunemix_sample_type AgilentTuneMix
  --sample_meta data/SingleField-RapidFire-DTIMS/Datasets.csv
  --colname_for_sample_type SampleType
  --colname_for_filename RawFileName
  --colname_for_ionization IonPolarity
  --degree 1
  --single_mode batch
  --mode single &> data/SingleField-RapidFire-DTIMS/LogFiles/single.log

SLIM-based IMS-MS

python -u autoCCS.py
  --config_file data/SLIM-IMS/autoCCS_config.xml
  --feature_files "data/SLIM-IMS/Features_csv/*.csv"
  --output_dir data/SLIM-IMS/Results/
  --mode single
  --calibrant_file data/SLIM-IMS/TuneMix-CCS_POS.txt
  --sample_meta data/SLIM-IMS/Datasets.csv
  --tunemix_sample_type AgilentTuneMix
  --colname_for_sample_type SampleType
  --colname_for_filename RawFileName
  --colname_for_ionization IonPolarity
  --single_mode batch
  --degree 2
  --calib_method poly
  --ppm 150 &> data/SLIM-IMS/LogFiles/slim.log

Users are allowed to apply high-order polynomial functions: quadratic (--degree 2), cubic (--degree 3), quartic (--degree 4), and so on.

  --degree 3 # for cubic

Also, it allows users to apply non-linear regression based on the linearized power function.

  --calib_method power

Citation

Lee, J-Y, Bilbao, A, Conant, CR, Bloodsworth, KJ, Orton, DJ, Zhou, M, ... & Metz, TO (2021). AutoCCS: Automated collision cross section calculation software for ion mobility spectrometry-mass spectrometry. Bioinformatics. https://doi.org/10.1093/bioinformatics/btab429

Contacts

Written by Joon-Yong Lee for the Department of Energy (PNNL, Richland, WA)
Copyright 2020, Battelle Memorial Institute. All Rights Reserved.
E-mail: joonyong.lee@pnnl.gov or proteomics@pnnl.gov
Website: https://omics.pnl.gov/ or https://panomics.pnnl.gov/

License

AutoCCS is licensed under the BSD 2-Clause License; License