Dataset & demo code for paper: 'MID-FiLD: MIDI Dataset for Fine-Level Dynamics' (AAAI 2024)
To use MID-FiLD, first clone this repository and run
unzip -q ./MiD-FiLD_dataset
to extract the MID-FiLD_dataset.zip
file into MID-FiLD_dataset/
directory in the cloned repository.
After extraction, the overall tree will be like this:
.
└── MID-FiLD_code/
├── assets/
│ ├── instrument.png
│ ├── mood.png
│ └── track_role.png
├── MiD-FiLD_dataset/
│ ├── train/
│ │ ├── MID_FiLD_0001.mid
│ │ ├── MID_FiLD_0002.mid
│ │ └── ...
│ ├── test/
│ │ ├── MID_FiLD_0031.mid
│ │ ├── MID_FiLD_0034.mid
│ │ └── ...
│ └── MID-FiLD_metadata.csv
├── LICENSE
└── README.md
- Each sample in MID-FiLD consists of 5 fields of metadata specified in the paper:
instrument
track_role
mood
min_cc
max_cc
- The metadatas can be accessed through the
MID-FiLD_metadata.csv
file in the extracted folder. Ex):
import pandas as pd
df = pd.DataFrame(".MID-FiLD_dataset/MID-FiLD_metadata.csv", sep=",", index="False")
- Each column of the dataframe contains the values for each metadata field, along with 2 more auxiliary columns:
-
id
: ID of the sample, -
split
: tagged with 'train
(3990 samples)' or 'test
(432 samples)'.Samples for each split category are placed in the path
./MID-FiLD_dataset/train/*
or./MID-FiLD_dataset/test/*
.
- Below shows each unique class in columns '
instrument
', 'track_role
', and 'mood
'.
Values in instrument: ['bamboo_flute', 'bassoon', 'brass_ensemble', 'clarinet', 'fiddle', 'flute', 'horn', 'oboe', 'sax', 'string_cello', 'string_double_bass', 'string_viola', 'string_violin', 'trombone', 'trumpet', 'tuba', 'whistle', 'woodwind_ensemble']
Values in track_role: ['accompaniment', 'bass', 'main_melody', 'pad', 'riff', 'sub_melody']
Values in mood: ['bouncy', 'calm', 'dreamy', 'funny', 'groovy', 'happy', 'hopeful', 'inspiring', 'magical', 'mysterious', 'peaceful', 'relaxing', 'romantic', 'sad', 'scary', 'sexy', 'tense', 'tragicomic', 'uplifting']
- The
./assets
directory contains the histogram of each classes in columns 'instrument
', 'track_role
', and 'mood
'.