/airflow-spark-delta

Docker with Airflow and Spark +Delta standalone cluster

Primary LanguagePython

Airflow Spark Delta

THIS PROJECT IS A FORK FROM airflow-spark WITH UPDATED VERSIONS OF PYTHON, POSTGRES, AIRFLOW, SPARK AND THE ADDITION OF DELTA (delta-spark==2.3.0).

PREREQ TO RUN ON WINDOWS:

  • WSL 2.0
  • Docker
  • You might need to change line endings from CRLF to LF of Dockerfiles inside docker/*/, docker/docker-airflow/entrypoint.sh, docker/docker-compose.yml and docker/docker-airflow/pg-init-scripts/init-user-db.sh.

This project contains the following containers:

Architecture components

Setup

Clone project

$ git clone https://github.com/nascimentocrafael/airflow-spark-delta

Build airflow Docker

Inside the airflow-spark/docker/docker-airflow

$ docker build --rm --force-rm -t docker-airflow-spark:2.5.3_3.3.2 .

Start containers

Inside the airflow-spark/docker create airflow user:

$ docker-compose run airflow-webserver airflow users create --role Admin --username admin --email admin --firstname admin --lastname admin --password admin

Start the containers:

$ docker-compose up

If you want to run in background:

$ docker-compose up -d

Note: when running the docker-compose for the first time, the images of postgres, bitnami/spark and jupyter/pyspark-notebook will be downloaded before the containers started.

Check if you can access

Airflow: http://localhost:8282

Spark Master: http://localhost:8181

PostgreSql - Database Test:

  • Server: localhost:5432
  • Database: test
  • User: test
  • Password: postgres

Postgres - Database airflow:

  • Server: localhost:5432
  • Database: airflow
  • User: airflow
  • Password: airflow

Jupyter Notebook: http://127.0.0.1:8888

  • For Jupyter notebook, you must copy the URL with the token generated when the container is started and paste in your browser. The URL with the token can be taken from container logs using:

    $ docker logs -f docker_jupyter-spark_1
    

How to run a DAG to test

  1. Configure spark connection acessing airflow web UI http://localhost:8282 and going to Connections

  2. Edit the spark_default connection inserting spark://spark in Host field and Port 7077

  3. Run the spark-test DAG

  4. Check the DAG log for the task spark_job. You will see the result printed in the log

  5. Check the spark application in the Spark Master web UI (http://localhost:8181)

How to run the Spark Apps via spark-submit

After started your docker containers, run the command below in your terminal:

$ docker exec -it docker_spark_1 spark-submit --master spark://spark:7077 <spark_app_path> [optional]<list_of_app_args>

Example running the hellop-world.py application:

$ docker exec -it docker_spark_1 spark-submit --master spark://spark:7077 /usr/local/spark/app/hello-world.py /usr/local/spark/resources/data/airflow.cfg

Increasing the number of Spark Workers

You can increase the number of Spark workers just adding new services based on below code to the docker-compose.yml file like following:

spark-worker-n:
        build: "./docker-pyspark-delta"
        user: root
        networks:
            - default_net
        environment:
            - SPARK_MODE=worker
            - SPARK_MASTER_URL=spark://spark:7077
            - SPARK_WORKER_MEMORY=1G
            - SPARK_WORKER_CORES=1
            - SPARK_RPC_AUTHENTICATION_ENABLED=no
            - SPARK_RPC_ENCRYPTION_ENABLED=no
            - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no
            - SPARK_SSL_ENABLED=no
            - PYSPARK_PYTHON=/opt/bitnami/python/bin/python3
            - PYSPARK_DRIVER_PYTHON=/opt/bitnami/python/bin/python3
        volumes:
            - ../spark/app:/usr/local/spark/app # Spark scripts folder (Must be the same path in airflow and Spark Cluster)
            - ../spark/resources:/usr/local/spark/resources #Resources folder (Must be the same path in airflow and Spark Cluster)

Adding Airflow Extra packages

Rebuild Dockerfile (in this example, adding GCP extra):

$ docker build --rm --build-arg AIRFLOW_DEPS="gcp" -t docker-airflow-spark:2.5.3_3.3.2 .

After successfully built, run docker-compose to start container:

$ docker-compose up

More info at: https://github.com/puckel/docker-airflow#build

Useful docker commands

List Images:
$ docker images <repository_name>

List Containers:
$ docker container ls

Check container logs:
$ docker logs -f <container_name>

To build a Dockerfile after changing sth (run inside directoty containing Dockerfile):
$ docker build --rm -t <tag_name> .

Access container bash:
$ docker exec -i -t <container_name> /bin/bash

Useful docker-compose commands

Start Containers:
$ docker-compose -f <compose-file.yml> up -d

Stop Containers:
$ docker-compose -f <compose-file.yml> down --remove-orphans

Extras

Spark + Delta sample