Smartreply
Smart Reply A.I using Deep Learning and NLP techniques.
Setting up the environment
- Use
virtualenv
(install using apt-get install virtualenv
)
- Install python3.8 (
apt-get install python3.8
)
- Create virtual environment using
virtualenv venv --python=python3.8
- Activate virtualenv using
source venv/bin/activate
- use
python api.py
for testing
Training the A.I Model
- Update the
intents.json
file with new training data
- Run
python training.py
- Model file will be generated and will be saved as
smart-reply-data.pkl
- Thats it!
Using the Flask-API
- Run
python api.py
- Use cURL or Postman to test the api running in port 80
cURL request
Predict smart response
curl --location --request POST 'http://127.0.0.1/api/v1/smartreply' \
--header 'Content-Type: application/json' \
--data-raw '{
"sentence":"Very bad restaurant",
"username":"Jason",
"email":"support@mail.com",
"phone":"9999999999",
"website":"https://example.com"
}'
Add more training data
curl --location --request POST 'http://127.0.0.1/api/v1/update' \
--header 'Content-Type: application/json' \
--data-raw '{
"pattern": "st22323",
"tag": "spam"
}'
Add more response
curl --location --request POST 'http://127.0.0.1/api/v1/addresponse' \
--header 'Content-Type: application/json' \
--data-raw '{
"response": "Hello {user}, please specify your concern",
"tag": "spam"
}'