- Python3
- PyTorch ==1.6.0
- Numpy
- fc7 layer feature:
- office_31_fc7.txt
- image_clef_fc7.txt
- office_Home_fc7.txt
- office-catech_fc7.txt
- DomainNet_fc7.txt
- pool5 layer feature:
- office_31_pool5.txt
- image_clef_pool5.txt
- office_Home_pool5.txt
- office-catech_pool5.txt
- DomainNet_pool5.txt
Download the pre-processed fc7 layer feature and pool5 layer feature from below link.
https://drive.google.com/drive/folders/1mAc2MPMIzChruQ6SBUC1eHB3XLSaDXvK?usp=sharing
-
Downloading the dataset(s) from above link.
-
Run the experiment(s) (task fc7 layer as example):
cd fc7 python main.py
To run this experiment, you need to modify the path
datafile = 'xxx.txt'
before you runpython main.py
.
If you use this code for your research, please consider citing:
@inproceedings{zhang2021multi,
title={Multi-task learning via generalized tensor trace norm},
author={Zhang, Yi and Zhang, Yu and Wang, Wei},
booktitle={Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},
pages={2254--2262},
year={2021}
}
@article{zhang2022learning,
title={Learning Linear and Nonlinear Low-Rank Structure in Multi-Task Learning},
author={Zhang, Yi and Zhang, Yu and Wang, Wei},
journal={IEEE Transactions on Knowledge and Data Engineering},
year={2022},
publisher={IEEE}
}
If you have any problem about our code, feel free to contact 11930380@mail.sustech.edu.cn.