CVPR 2023
- Python 3.9
- PyTorch 1.11.0
- faiss
conda install -c pytorch faiss-gpu
We follow DFC to obtain datasets.
We follow DFDC to obtain dataset.
Modify the ./Utils/PathPresettingOperator.get_dataset_path
, then train the model(s):
# Color Reverse MNIST
python main.py --dataset ReverseMNIST --seed 0
# Office-31
python main.py --dataset Office --seed 0
# MTFL
python main.py --dataset MTFL --seed 9116
# HAR
python main.py --dataset HAR --seed 9116
# MNIST-USPS
python main.py --dataset MNISTUSPS --seed 9116
The pre-trained models are available here:
Dataset | Model | Results |
---|---|---|
Color Reverse MNIST | Model | Results |
Office-31 | Model | Results |
MTFL | Model | Results |
HAR | Model | Results |
MNIST-USPS | Model | Results |
Download the models, then:
python main.py --dataset dataset --seed seed --resume PathToYourModel
If FCMI is useful for your research, please cite the following paper:
@inproceedings{zeng2023deep,
title={Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory, Algorithm and Metric},
author={Zeng, Pengxin and Li, Yunfan and Hu, Peng and Peng, Dezhong and Lv, Jiancheng and Peng, Xi},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={23986--23995},
year={2023}
}