/ANN-Net-classification

HNU《机器学习》-第二次实验: 使用神经网络对“car+evaluation”数据集进行分类。简单地利用pytorch实现神经网络

Primary LanguagePythonApache License 2.0Apache-2.0

《机器学习课程》第二次实验:神经网络对car_1000.txt进行分类

使用pytorch框架简单完成。后续准备实现手写神经网络完成实验

本次实验非常简单,关键是对神经网络的调参

决策树实验链接

与决策树不同,相同的超参数设置神经网络训练出的最终模型的网络参数不同

单层神经网络

import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split, StratifiedShuffleSplit
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

# 定义一个简单的神经网络模型
class SimpleNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一个全连接层,输入维度为input_size,输出维度为hidden_size
        self.relu = nn.ReLU()  # ReLU激活函数
        self.fc2 = nn.Linear(hidden_size, num_classes)  # 第二个全连接层,输入维度为hidden_size,输出维度为num_classes

    def forward(self, x):
        out = self.fc1(x)  # 将输入数据x传入第一个全连接层
        out = self.relu(out)  # 对第一个全连接层的输出应用ReLU激活函数
        out = self.fc2(out)  # 将ReLU函数的输出传入第二个全连接层
        return out  # 返回最终的输出

# 计算模型的准确率
def calculate_accuracy(y_pred, y_true):
    _, predicted = torch.max(y_pred.data, 1)  # 获取预测结果中概率最大的类别
    total = y_true.size(0)  # 样本总数
    correct = (predicted == y_true).sum().item()  # 预测正确的样本数
    return correct / total  # 返回准确率

# 加载数据并进行预处理
df = pd.read_csv('dataset/car_1000.txt', names=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'label'])
features = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety']

# 将特征值转换为数值
for feature in features + ['label']:
    df[feature] = df[feature].astype('category').cat.codes

X = df[features].values  # 提取特征值
y = df['label'].values  # 提取标签值

# 使用 StandardScaler 对输入数据进行标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 使用StratifiedShuffleSplit按照label的比例划分训练集、验证集和测试集
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
train_val_index, test_index = next(sss.split(X, y))
X_train, X_test = X[train_val_index], X[test_index]
y_train, y_test = y[train_val_index], y[test_index]

# 加载验证集数据
val_df = pd.read_csv('dataset/val.csv', names=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'label'])

# 将验证集的特征值转换为数值
features = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety']
for feature in features + ['label']:
    val_df[feature] = val_df[feature].astype('category').cat.codes

X_val = val_df[features].values  # 提取验证集的特征值
y_val = val_df['label'].values  # 提取验证集的标签值

# 对验证集进行标准化
X_val = scaler.transform(X_val)

# 将数据转换为PyTorch的Tensor格式
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.long)
X_val = torch.tensor(X_val, dtype=torch.float32)
y_val = torch.tensor(y_val, dtype=torch.long)
X_test = torch.tensor(X_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.long)

# 创建训练集的DataLoader
train_dataset = TensorDataset(X_train, y_train)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

# 初始化模型、损失函数和优化器
model = SimpleNN(input_size=6, hidden_size=10, num_classes=4)
criterion = nn.CrossEntropyLoss() # softmax运算和负对数似然损失的计算
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练和评估模型
train_accuracies = []  # 存储训练集准确率
test_accuracies = []  # 存储测试集准确率
val_accuracies = []  # 存储验证集准确率
epochs = 100  # 训练轮数

for epoch in range(epochs):
    model.train()  # 将模型设置为训练模式
    for inputs, labels in train_loader:
        outputs = model(inputs)  # 前向传播
        loss = criterion(outputs, labels)  # 计算损失
        optimizer.zero_grad()  # 梯度清零
        loss.backward()  # 反向传播
        optimizer.step()  # 更新参数

    model.eval()  # 将模型设置为评估模式
    with torch.no_grad():  # 禁用梯度计算
        train_outputs = model(X_train)
        train_accuracy = calculate_accuracy(train_outputs, y_train)  # 计算训练集准确率

        val_outputs = model(X_val)
        val_accuracy = calculate_accuracy(val_outputs, y_val)  # 计算验证集准确率

        test_outputs = model(X_test)
        test_accuracy = calculate_accuracy(test_outputs, y_test)  # 计算测试集准确率

    train_accuracies.append(train_accuracy)
    val_accuracies.append(val_accuracy)
    test_accuracies.append(test_accuracy)

    # 打印每个epoch的准确率
    print(f'Epoch {epoch + 1}, Train Acc: {train_accuracy * 100:.2f}%, Val Acc: {val_accuracy * 100:.2f}%, Test Acc: {test_accuracy * 100:.2f}%')

# 绘制准确率随epoch变化的曲线
plt.plot(range(1, len(train_accuracies) + 1), train_accuracies, label='Train Acc')
plt.plot(range(1, len(val_accuracies) + 1), val_accuracies, label='Val Acc')
plt.plot(range(1, len(test_accuracies) + 1), test_accuracies, label='Test Acc')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Accuracy over Epochs')
plt.legend()
plt.show()

# 指定模型保存的路径
model_path = 'trained_model.pth'

# 保存模型的状态字典
torch.save(model.state_dict(), model_path)
print(f'Model saved to {model_path}')

image-20240422204344716

image-20240422204405516

多层神经网络

import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split, StratifiedShuffleSplit
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
from torch.optim.lr_scheduler import ReduceLROnPlateau

# 定义一个改进的神经网络模型
class ImprovedNN(nn.Module):
    def __init__(self, input_size, hidden_sizes, num_classes, dropout_prob=0.5):
        super(ImprovedNN, self).__init__()
        self.hidden_layers = nn.ModuleList()
        self.hidden_layers.append(nn.Linear(input_size, hidden_sizes[0]))  # 第一个隐藏层
        self.hidden_layers.append(nn.BatchNorm1d(hidden_sizes[0]))  # 第一个隐藏层后的批归一化层

        # 添加剩余的隐藏层和对应的批归一化层
        for i in range(1, len(hidden_sizes)):
            self.hidden_layers.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
            self.hidden_layers.append(nn.BatchNorm1d(hidden_sizes[i]))

        self.output_layer = nn.Linear(hidden_sizes[-1], num_classes)  # 输出层
        self.relu = nn.ReLU()  # ReLU激活函数
        self.dropout = nn.Dropout(dropout_prob)  # Dropout层,用于正则化

    def forward(self, x):
        # 前向传播过程,依次经过隐藏层、批归一化层、ReLU激活和Dropout
        for i in range(0, len(self.hidden_layers), 2):
            x = self.relu(self.hidden_layers[i](x))
            x = self.hidden_layers[i + 1](x)
            x = self.dropout(x)
        x = self.output_layer(x)  # 最后通过输出层得到预测结果
        return x

# 计算模型的准确率
def calculate_accuracy(y_pred, y_true):
    _, predicted = torch.max(y_pred.data, 1)  # 获取预测结果中概率最大的类别
    total = y_true.size(0)  # 样本总数
    correct = (predicted == y_true).sum().item()  # 预测正确的样本数
    return correct / total  # 返回准确率

# 加载数据并进行预处理
df = pd.read_csv('dataset/car_1000.txt', names=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'label'])
features = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety']

# 将特征值转换为数值
for feature in features + ['label']:
    df[feature] = df[feature].astype('category').cat.codes

X = df[features].values  # 提取特征值
y = df['label'].values  # 提取标签值

# 使用 StandardScaler 对输入数据进行标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 使用StratifiedShuffleSplit按照label的比例划分训练集、验证集和测试集
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
train_val_index, test_index = next(sss.split(X, y))
X_train, X_test = X[train_val_index], X[test_index]
y_train, y_test = y[train_val_index], y[test_index]

# 加载验证集数据
val_df = pd.read_csv('dataset/val.csv', names=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'label'])

features = ['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety']
# 将验证集的特征值转换为数值
for feature in features + ['label']:
    val_df[feature] = val_df[feature].astype('category').cat.codes

X_val = val_df[features].values  # 提取验证集的特征值
y_val = val_df['label'].values  # 提取验证集的标签值

# 对验证集进行标准化
X_val = scaler.transform(X_val)

# 将数据转换为PyTorch的Tensor格式
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.long)
X_val = torch.tensor(X_val, dtype=torch.float32)
y_val = torch.tensor(y_val, dtype=torch.long)
X_test = torch.tensor(X_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.long)

# 创建训练集的DataLoader
train_dataset = TensorDataset(X_train, y_train)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

# 初始化模型、损失函数、优化器和学习率调度器
model = ImprovedNN(input_size=6, hidden_sizes=[256, 128, 64, 32], num_classes=4, dropout_prob=0.4)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.01)
scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=10, verbose=True)

# 训练和评估模型
train_accuracies = []  # 存储训练集准确率
val_accuracies = []  # 存储验证集准确率
test_accuracies = []  # 存储测试集准确率
epochs = 200  # 训练轮数
best_val_acc = 0  # 最佳验证集准确率
patience = 20  # early stopping的耐心值
counter = 0  # early stopping的计数器

for epoch in range(epochs):
    model.train()  # 将模型设置为训练模式
    for inputs, labels in train_loader:
        outputs = model(inputs)  # 前向传播
        loss = criterion(outputs, labels)  # 计算损失
        optimizer.zero_grad()  # 梯度清零
        loss.backward()  # 反向传播
        optimizer.step()  # 更新参数

    model.eval()  # 将模型设置为评估模式
    with torch.no_grad():  # 禁用梯度计算
        train_outputs = model(X_train)
        train_accuracy = calculate_accuracy(train_outputs, y_train)  # 计算训练集准确率

        val_outputs = model(X_val)
        val_accuracy = calculate_accuracy(val_outputs, y_val)  # 计算验证集准确率

        test_outputs = model(X_test)
        test_accuracy = calculate_accuracy(test_outputs, y_test)  # 计算测试集准确率

    train_accuracies.append(train_accuracy)
    val_accuracies.append(val_accuracy)
    test_accuracies.append(test_accuracy)

    # 打印每个epoch的准确率
    print(f'Epoch {epoch + 1}, Train Acc: {train_accuracy * 100:.2f}%, Val Acc: {val_accuracy * 100:.2f}%, Test Acc: {test_accuracy * 100:.2f}%')

    scheduler.step(val_accuracy)  # 根据验证集准确率调整学习率

    # Early stopping机制
    if val_accuracy > best_val_acc:
        best_val_acc = val_accuracy
        counter = 0
    else:
        counter += 1
        if counter >= patience:
            print(f'Early stopping at epoch {epoch + 1}')
            break

# 绘制准确率随epoch变化的曲线
plt.plot(range(1, len(train_accuracies) + 1), train_accuracies, label='Train Acc')
plt.plot(range(1, len(val_accuracies) + 1), val_accuracies, label='Val Acc')
plt.plot(range(1, len(test_accuracies) + 1), test_accuracies, label='Test Acc')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Accuracy over Epochs')
plt.legend()
plt.show()

# 保存改进后的模型
model_path = 'improved_model.pth'
torch.save(model.state_dict(), model_path)
print(f'Improved model saved to {model_path}')

image-20240422204126938

image-20240422204143548