/quorum-examples

Examples for Quorum

Primary LanguageShellApache License 2.0Apache-2.0

Quorum Examples

This repository contains scripts for advanced deployment and connection to the Quorum Platform.

Usage notice

This project is meant for advanced Quorum users (mainly Quorum contributors) who are already familiar with Quorum deployments and who are looking for some advanced configurations for their network.

If you have a limited experience with Quorum, or if you are looking to start a Quorum network for some testing purposes then you should instead use our quorum-dev-quickstart.

We do not guarantee that all scripts in this project work out of the box, in particular some scripts may be out of date and will require some adjustments from users to properly work on latest Quorum versions.

About

Current examples include:

  • 7nodes: Starts up a fully-functioning Quorum environment consisting of 7 independent nodes. From this example one can test consensus, privacy, and all the expected functionality of an Ethereum platform.

Additional examples exist highlighting and showcasing the functionality offered by the Quorum platform. An up-to-date list can be found in the Quorum Documentation site.

Installation

Clone the quorum-examples repo.

git clone https://github.com/Consensys/quorum-examples.git

Important note: Any account/encryption keys used in the quorum-examples repo are for demonstration and testing purposes only. Before running a real environment, new keys should be generated using Geth's account tool, Tessera's -keygen option, and Constellation's --generate-keys option

Prepare your environment

A 7 node Quorum network must be running before the example can be run. The quorum-examples repo provides the means to create a pre-configured sample network in minutes.

There are 3 ways to start the sample network, each method is detailed below:

  1. By running a pre-configured Vagrant virtual-machine environment which comes complete with Quorum, Constellation, Tessera and the 7nodes example already installed. Bash scripts provided in the examples are used to create the sample network: Running with Vagrant
  2. By running docker-compose against a preconfigured compose file to create the sample network: Running with Docker
  3. By installing Quorum and Tessera/Constellation locally and using bash scripts provided in the examples to create the sample network: Running locally

Your environment must be prepared differently depending on the method being used to run the example.

Running with Vagrant

  1. Install VirtualBox

  2. Install Vagrant

  3. Download and start the Vagrant instance (note: running vagrant up takes approx 5 mins):

    git clone https://github.com/Consensys/quorum-examples
    cd quorum-examples
    vagrant up
    vagrant ssh
  4. To shutdown the Vagrant instance, run vagrant suspend. To delete it, run vagrant destroy. To start from scratch, run vagrant up after destroying the instance.

Troubleshooting Vagrant

  • If you are behind a proxy server, please see Consensys/quorum#23.
  • If you are using macOS and get an error saying that the ubuntu/xenial64 image doesn't exist, please run sudo rm -r /opt/vagrant/embedded/bin/curl. This is usually due to issues with the version of curl bundled with Vagrant.
  • If you receive the error default: cp: cannot open '/path/to/geth.ipc' for reading: Operation not supported after running vagrant up, run ./raft-init.sh within the 7nodes directory on your local machine. This will remove temporary files created after running 7nodes locally and will enable vagrant up to execute correctly.

Troubleshooting Vagrant: VBoxManage error during vagrant up

If encountering an error like

VBoxManage: error: Details: code NS_ERROR_FAILURE (0x80004005), component MachineWrap, interface IMachine

during vagrant up try the following:

  • macOS - Open Security & Privacy system preferences after VirtualBox installation. Allow installation of software from Oracle (as described here). Uninstalling and installing VirtualBox may be required to show the prompt again.
  • Download VM VirtualBox Extension Pack from VirtualBox downloads (macOS - Also allow installation as described above).

Troubleshooting Vagrant: Memory usage

  • The Vagrant instance is allocated 6 GB of memory. This is defined in the Vagrantfile, v.memory = 6144. This has been deemed a suitable value to allow the VM and examples to run as expected. The memory allocation can be changed by updating this value and running vagrant reload to apply the change.

  • If the machine you are using has less than 8 GB memory you will likely encounter system issues such as slow down and unresponsiveness when starting the Vagrant instance as your machine will not have the capacity to run the VM. There are several steps that can be taken to overcome this:

    1. Shutdown any running processes that are not required
    2. If running the 7nodes example, reduce the number of nodes started up. See the 7nodes: Reducing the number of nodes for info on how to do this.
    3. Set up and run the examples locally. Running locally reduces the load on your memory compared to running in Vagrant.

Running with Docker

  1. Install Docker (https://www.docker.com/get-started)
    • If your Docker distribution does not contain docker-compose, follow this to install Docker Compose
    • Make sure your Docker daemon has at least 4G memory
    • Required Docker Engine 18.02.0+ and Docker Compose 1.21+
  2. Download and run docker-compose
    git clone https://github.com/Consensys/quorum-examples
    cd quorum-examples
    docker-compose up -d
  3. By default, the Quorum network is created with Tessera privacy managers and Istanbul BFT consensus. To use Raft consensus, set the environment variable QUORUM_CONSENSUS=raft before running docker-compose. To start a Quorum node without its associated privacy transaction manager, set PRIVATE_CONFIG=ignore. QUORUM_CONSENSUS and PRIVATE_CONFIG can be set together.
    PRIVATE_CONFIG=ignore QUORUM_CONSENSUS=raft docker-compose up -d
    Note that additional geth command line parameters can also be specified via the environment variable QUORUM_GETH_ARGS
  4. Run docker ps to verify that all quorum-examples containers (7 nodes and 7 tx managers) are healthy
  5. Run docker logs <container-name> -f to view the logs for a particular container
  6. Note: to run the 7nodes demo, use the following snippet to open geth Javascript console to a desired node (using container name from docker ps) and send a private transaction
    $ docker exec -it quorum-examples_node1_1 geth attach /qdata/dd/geth.ipc
    Welcome to the Geth JavaScript console!
    
    instance: Geth/node1-istanbul/v1.7.2-stable/linux-amd64/go1.9.7
    coinbase: 0xd8dba507e85f116b1f7e231ca8525fc9008a6966
    at block: 70 (Thu, 18 Oct 2018 14:49:47 UTC)
     datadir: /qdata/dd
     modules: admin:1.0 debug:1.0 eth:1.0 istanbul:1.0 miner:1.0 net:1.0 personal:1.0 rpc:1.0 txpool:1.0 web3:1.0
    
    > loadScript('/examples/private-contract.js')
  7. Shutdown Quorum Network
    docker-compose down

Troubleshooting Docker

  1. Docker is frozen
    • Check if your Docker daemon is allocated enough memory (minimum 4G)
  2. Tessera crashes due to missing file/directory
    • This is due to the location of quorum-examples folder is not shared
    • Please refer to Docker documentation for more details:
  3. If you run Docker inside Docker, make sure to run the container with --privileged

Running locally

Note: Quorum must be run on Ubuntu-based/macOS machines. Constellation can only be run on Ubuntu-based machines. Running the examples therefore requires an Ubuntu-based/macOS machine. If running the examples using Constellation then an Ubuntu-based machine is required.

  1. Install Golang

  2. Download and build Quorum:

    git clone https://github.com/Consensys/quorum
    cd quorum
    make
    GETHDIR=`pwd`; export PATH=$GETHDIR/build/bin:$PATH
    cd ..
  3. Download and build Tessera (see README for build options)

    git clone https://github.com/Consensys/tessera.git
    cd tessera
    mvn install
  4. Download quorum-examples

    git clone https://github.com/Consensys/quorum-examples

Starting the 7nodes sample network

Note: This is not required if docker-compose has been used to prepare the network as the docker-compose command performs these actions for you

Shell scripts are included in the examples to make it simple to configure the network and start submitting transactions.

All logs and temporary data are written to the qdata folder.

The sample network can be created to run using Istanbul BFT, QBFT, Raft or Clique POA consensus mechanisms. In the following commands replace {consensus} with one of raft, istanbul qbft or clique depending on the consensus mechanism you want to use.

  1. Navigate to the 7nodes example directory, configure the Quorum nodes and initialize accounts & keystores:

    cd path/to/7nodes
    ./{consensus}-init.sh
  2. Start the Quorum and privacy manager nodes (Constellation or Tessera):

    • If running in Vagrant:

      ./{consensus}-start.sh

      By default, Tessera will be used as the privacy manager. To use Constellation run the following:

      ./{consensus}-start.sh constellation
      
    • If running locally:

      TESSERA_{JAR|SCRIPT}=/path/to/jar-or-startscript ./{consensus}-start.sh
      

      The {consensus}-start.sh scripts look for a Tessera executable at default paths unique to the Vagrant environment. When running locally these defaults must be overriden with the TESSERA_SCRIPT or TESSERA_JAR environment variables. Set TESSERA_SCRIPT when using the newer versions of Tessera distributed as a .tar - extract the tar and set TESSERA_SCRIPT to the contained runnable script. Set TESSERA_JAR when using older versions of Tessera distributed as an executable .jar.

  3. You are now ready to start sending private/public transactions between the nodes

  4. To stop the network:

    ./stop.sh

Running the example

quorum-examples includes some simple transaction contracts to demonstrate the privacy features of Quorum. See the 7nodes Example page for details on how to run them.

Variations

Reducing the number of nodes

It is easy to reduce the number of nodes used in the example network. You may want to do this for memory usage reasons or just to experiment with a different network configuration.

For example, to run the example with 5 nodes instead of 7, follow these steps:

  1. Update the list of nodes involved in consensus

    • If using Raft
      1. Remove node 6 and node 7's enode addresses from permissioned-nodes.json (i.e. the entries with raftport 50406 and 50407). Ensure that there is no trailing comma on the last row of enode details in the file.
    • If using IBFT
      1. Find the 20-byte address representations of node 6 and node 7's nodekey (nodekeys located at qdata/dd{i}/geth/nodekey). There are many ways to do this, one is to run a script making use of ethereumjs-wallet:
        const wlt = require('ethereumjs-wallet');
        
        var nodekey = '1be3b50b31734be48452c29d714941ba165ef0cbf3ccea8ca16c45e3d8d45fb0';
        var wallet = wlt.fromPrivateKey(Buffer.from(nodekey, 'hex'));
        
        console.log('addr: ' + wallet.getAddressString());
      2. Use istanbul-tools to decode the extraData field in istanbul-genesis.json
        git clone https://github.com/Consensys/istanbul-tools.git
        cd istanbul-tools
        make istanbul
        ./build/bin/istanbul extra decode --extradata <...>
      3. Copy the output into a new .toml file and update the formatting to the following:
        vanity = "0x0000000000000000000000000000000000000000000000000000000000000000"
        validators = [
          "0xd8dba507e85f116b1f7e231ca8525fc9008a6966",
          "0x6571d97f340c8495b661a823f2c2145ca47d63c2",
          ...
        ]
      4. Remove the addresses of node 6 and node 7 from the validators list
      5. Use istanbul-tools to encode the .toml as extraData
        ./build/bin/istanbul extra encode --config /path/to/conf.toml
      6. Update the extraData field in istanbul-genesis.json with output from the encoding
    • If using QBFT
      1. Find the 20-byte address representations of node 6 and node 7's nodekey (nodekeys located at qdata/dd{i}/geth/nodekey). There are many ways to do this, one is to run a script making use of ethereumjs-wallet:
        const wlt = require('ethereumjs-wallet');
        
        var nodekey = '1be3b50b31734be48452c29d714941ba165ef0cbf3ccea8ca16c45e3d8d45fb0';
        var wallet = wlt.fromPrivateKey(Buffer.from(nodekey, 'hex'));
        
        console.log('addr: ' + wallet.getAddressString());
      2. Use istanbul-tools to decode the extraData field in qbft-genesis.json
        git clone https://github.com/Consensys/istanbul-tools.git
        cd istanbul-tools
        make qbft
        ./build/bin/qbft extra decode --extradata <...>
      3. Copy the output into a new .toml file and update the formatting to the following:
        vanity = "0x0000000000000000000000000000000000000000000000000000000000000000"
        validators = [
          "0xd8dba507e85f116b1f7e231ca8525fc9008a6966",
          "0x6571d97f340c8495b661a823f2c2145ca47d63c2",
          ...
        ]
      4. Remove the addresses of node 6 and node 7 from the validators list
      5. Use istanbul-tools to encode the .toml as extraData
        ./build/bin/qbft extra encode --config /path/to/conf.toml
      6. Update the extraData field in qbft-genesis.json with output from the encoding
  2. After making these changes, the relevant init/start scripts can be run (replace {consensus} with the relevent consensus mechanism in the following):

    # ./{consensus}-init.sh --numNodes 5
    # ./{consensus}-start.sh
  3. private-contract.js by default sends a transaction to node 7. As node 7 will no longer be started this must be updated to instead send to node 5:

    1. Copy node 5's public key from ./keys/tm5.pub

    2. Replace the existing privateFor in private-contract.js with the key copied from tm5.pub key, e.g.:

      var simple = simpleContract.new(42, {from:web3.eth.accounts[0], data: bytecode, gas: 0x47b760, privateFor: ["R56gy4dn24YOjwyesTczYa8m5xhP6hF2uTMCju/1xkY="]}, function(e, contract) {...}

You can then follow steps described above to verify that node 5 can see the transaction payload and that nodes 2-4 are unable to see the payload.

Using a Tessera remote enclave

Tessera v0.9 introduced the ability to run the privacy manager's enclave as a separate process from the Transaction Manager. This is a more secure way of being able to manage and interact with your keys.

To start a sample 7nodes network that uses remote enclaves run ./{consensus}-start.sh tessera-remote. By default this will start 7 Transaction Managers, the first 4 of which use a remote enclave. If you wish to change this number, you will need to add the extra parameter --remoteEnclaves X in the --tesseraOptions, e.g. ./{consensus}-start.sh tessera-remote --tesseraOptions "--remoteEnclaves 7".

Experimenting with alternative curves in Tessera

By default tessera uses the NaCl(salt) library in order to encrypt private payloads. If you would like to experiment with/use alternative curves/symmetric ciphers you can choose to configure the EC Encryptor (which relies on JCA to perform a similar logic to NaCl). The tessera initialization script uses the the following environment variables to generate the encryptor section of the tessera configuration file:

Environment Variable Name Default Value Description
ENCRYPTOR_TYPE NACL The encryptor type. Possible values are EC or NACL.
ENCRYPTOR_EC_ELLIPTIC_CURVE secp256r1 The elliptic curve to use. See SunEC provider for other options. Depending on the JCE provider you are using there may be additional curves available.
ENCRYPTOR_EC_SYMMETRIC_CIPHER AES/GCM/NoPadding The symmetric cipher to use for encrypting data (GCM IS MANDATORY as an initialisation vector is supplied during encryption).
ENCRYPTOR_EC_NONCE_LENGTH 24 The nonce length (used as the initialization vector - IV - for symmetric encryption).
ENCRYPTOR_EC_SHARED_KEY_LENGTH 32 The key length used for symmetric encryption (keep in mind the key derivation operation always produces 32 byte keys - so the encryption algorithm must support it).

Based on the default values above (provided ENCRYPTOR_TYPE is defined as EC) the following configuration entry is produced:

...
    "encryptor": {
        "type":"EC",
        "properties":{
            "symmetricCipher":"AES/GCM/NoPadding",
            "ellipticCurve":"secp256r1",
            "nonceLength":"24",
            "sharedKeyLength":"32"
        }
    }
...

Example:

export ENCRYPTOR_TYPE=EC
export ENCRYPTOR_EC_ELLIPTIC_CURVE=sect571k1
./raft-init.sh

Next steps: Sending transactions

Some simple transaction contracts are included in quorum-examples to demonstrate the privacy features of Quorum. To learn how to use them see the 7nodes README.

Getting Help

Stuck at some step? Please join our slack community for support.