/DL-Project-2

Repo for the Deep Learning Project 2, Group 10

Primary LanguageJupyter Notebook

DL-Project-2

Repo for the Deep Learning Project 2, Group 10

How to RUN (RNN models):

  • Place the 'data' folder within the RNN folder
  • Running an individual experiment: Open the terminal within RNN/ and specify the desired configuration with the arguments:
    • python3 run.py -M train -E MogLSTM -ED 2 -D MogLSTM -O ADAM -EN 100 -lr 0.001
    • outputs (within 'txt_results' folder):
      • bleu_train_GRU2GRU_d0.1_gc1.0_lr0.001.txt
      • loss_train_GRU2GRU_d0.1_gc1.0_lr0.001.txt

How to visualize experiment results (RNN models):

  • Open the terminal within RNN/ and run plot.py accompanied by the following arguments:
    • the datafile,
    • and the metric with the modified (relative to default settings) hyperparameters in the experiment
  • Example: python3 plot.py -p "txt_results/GRU_experiments/bleu_train_GRU2GRU_d0.1_gc1.0_lr0.001.txt" -n "bleu_gc1.0"
  • output: GRU2GRU_bleu_gc1.0.png

How to RUN (BERT):

  • Download the training data : formatted_movie_lines_train.txt
  • Download the supporting scripts :
    • finetune_on_pregenerated.py
    • pregenerate_training_data.py
    • simple_lm_finetuning.py
  • Open the DL_BERT_GEN.ipynb notebook and run all (entire script will take 3-5 hours on Google Colab)
  • Outputs a BERT model fine-tuned on training data

How to run (GPT-2)

  • Downloading the training datasets: * formatted_movie_lines_train.txt * formatted_movie_lines_QR_train.txt
  • Download the Python scripts in the GPT2 folder
  • (optional) Download the .sh files if you want to run them on Peregrine
  • Run the Python script or the Shell script

Qualitative analysis:

alt text