Underwater Object Detection [Optical]

Papers

  • Reveal of Domain Effect: Xingyu Chen, Yue Lu, Zhengxing Wu, Junzhi Yu, Li Wen.
    "Reveal of Domain Effect: How Visual Restoration Contributes to Object Detection in Aquatic Scenes." ArXiv (2020). [paper] Very Interesting Insights on Image Restoration and Object Detection!!

  • RoIMix: Wei-Hong Lin, Jia-Xing Zhong, Shan Liu, Thomas Li, Ge Li.
    "RoIMix: Proposal-Fusion among Multiple Images for Underwater Object Detection." ArXiv (2019). [paper] [知乎]

  • Hongbo Yang, Ping Liu, YuZhen Hu, JingNan Fu.
    "Research on Underwater Object Recognition Based on YOLOv3." Microsystem Technologies (2020). [paper]

  • UWCNN: Chongyi Li, Saeed Anwar, Fatih Porikli.
    "Underwater Scene Prior Inspired Deep Underwater Image and Video Enhancement." Pattern Recognition (2020). [paper] [code]

  • UWGAN: Nan Wang, Yabin Zhou, Fenglei Han, Haitao Zhu, Yaojing Zheng.
    "UWGAN: Underwater GAN for Real-world Underwater Color Restoration and Dehazing." ArXiv (2019). [paper] [code]

  • AIO: Pritish Uplavikar, Zhenyu Wu, Zhangyang Wang.
    "All-In-One Underwater Image Enhancement using Domain-Adversarial Learning." CVPRW (2019). [paper] [code]

  • UWStereoNet: Katherine A. Skinner, Junming Zhang, Elizabeth A. Olson, Matthew Johnson-Roberson.
    "UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery." ICRA (2019). [paper] [code]Only for Disparity

  • Water-Net: Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, Dacheng Tao.
    "An Underwater Image Enhancement Benchmark Dataset and Beyond." IEEE Transactions on Image Processing (2019) [paper] [project]

  • WaterGAN: Jie Li, Katherine A. Skinner, Ryan Eustice, M. Johnson-Roberson.
    "WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images." IEEE Robotics and Automation Letters (2017). [paper] [code]

Benchmarks & Surverys

  • RUIE: Risheng Liu, Xin Fan, Ming Zhu, Minjun Hou, Zhongxuan Luog.
    "Real-world Underwater Enhancement: Challenges, Benchmarks, and Solution." ArXiv (2019). [paper] [project]

  • UDD: Zhihui Wang, Chongwei Liu, Shijie Wang, Tao Tang, Yulong Tao, Caifei Yang, Haojie Li, Xing Liu, Xin Fan.
    "An Underwater Open-sea Farm Object Detection Dataset for Underwater Robot Picking." [paper]

  • UIEB: Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, Dacheng Tao.
    "An Underwater Image Enhancement Benchmark Dataset and Beyond." IEEE TIP (2019) [paper] [project]

  • Yan Wang, Wei Song, Giancarlo Fortino, Li-Zhe Qi, Wenqiang Zhang, Antonio Liotta.
    "An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging." IEEE Access (2019). [paper] [code]

  • Saeed Anwar, Chongyi Li, Fatih Porikli.
    "Deep Underwater Image Enhancement." ArXiv (2018). [paper]

  • Min Han, Zhiyu Lyu, Tie Qiu, Meiling Xu.
    "A Review on Intelligence Dehazing and Color Restoration for Underwater Images." IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018). [paper]

  • URPC2018: [download from Google Drive] [download from DUT Pan]
    This dataset is for the URPC2018 challenge (http://2018.cnurpc.org/) and is for research purpose only.

中文文献

  • 朱世伟,杭仁龙,刘青山.
    "基于类加权YOLO网络的水下目标检测." 南京师大学报(自然科学版) (2020) [论文]

  • 徐凤强,董鹏,王辉兵,付先平.
    "基于水下机器人的海产品智能检测与自主抓取系统." 北京航空航天大学学报 (2019) [论文]

Related Resources