/KNN_CUDA

pytorch knn [cuda version]

Primary LanguageCuda

KNN_CUDA

Modifications

  • Aten support
  • pytorch v1.0+ support
  • pytorch c++ extention

Performance

  • dim = 5
  • k = 100
  • ref = 224
  • query = 224
  • Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
  • NVIDIA GeForce 940MX
Loop sklearn CUDA Memory
100 2.34 ms 0.06 ms 652/1024
1000 2.30 ms 1.40 ms 652/1024

Install

  • from source
git clone https://github.com/unlimblue/KNN_CUDA.git
cd KNN_CUDA
make && make install
  • from wheel
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl

And then, make sure ninja has been installed:

  1. see https://pytorch.org/tutorials/advanced/cpp_extension.html
  2. or just:
wget -P /usr/bin https://github.com/unlimblue/KNN_CUDA/raw/master/ninja
  • for windows

You should use branch windows:

git clone --branch windows https://github.com/unlimblue/KNN_CUDA.git
cd C:\\PATH_TO_KNN_CUDA
make
make install

Usage

import torch

# Make sure your CUDA is available.
assert torch.cuda.is_available()

from knn_cuda import KNN
"""
if transpose_mode is True, 
    ref   is Tensor [bs x nr x dim]
    query is Tensor [bs x nq x dim]
    
    return 
        dist is Tensor [bs x nq x k]
        indx is Tensor [bs x nq x k]
else
    ref   is Tensor [bs x dim x nr]
    query is Tensor [bs x dim x nq]
    
    return 
        dist is Tensor [bs x k x nq]
        indx is Tensor [bs x k x nq]
"""

knn = KNN(k=10, transpose_mode=True)

ref = torch.rand(32, 1000, 5).cuda()
query = torch.rand(32, 50, 5).cuda()

dist, indx = knn(ref, query)  # 32 x 50 x 10