This page created as page with learning plan and as page consist ordered list of source links
mlcourse.ai is an open Machine Learning course by OpenDataScience. The course is designed to perfectly balance theory and practice. You can take part in several Kaggle Inclass competitions held during the course. From spring 2017 to fall 2019, 6 sessions of mlcourse.ai took place - 26k participants applied, 10k converted to passing the first assignment, about 1500 participants finished the course. Currently, the course is in self-paced mode. Check out a thorough Roadmap guiding you through the self-paced mlcourse.ai.
-
Video lectures:
-
Article, Exploratory Data Analysis with Pandas:
-
Homework:
-
Video lectures:
-
Article "Visual Data Analysis with Python"
-
Homework:
-
Useful resources:
-
Video lectures:
-
Articles:
- Classification, Decision Trees and k Nearest Neighbors 🇬🇧
- Тема 3. Классификация, деревья решений и метод ближайших соседей 🇷🇺
- 🇨🇳
- Kaggle Notebook
-
Homework:
-
Useful resources:
-
Video lectures:
-
Articles.
-
Homework:
- Assignment 4. Sarcasm detection with logistic regression 🇬🇧
- Assignment #6 (demo). Exploring OLS, Lasso and Random Forest in a regression task
- Домашнее задание № 4 (демо). Прогнозирование популярности статей на TechMedia (Хабр) с помощью линейных моделей 🇷🇺
- Прогноз популярности статьи на Хабре. Kaggle Competition
-
Useful resources: + MTH594 Advanced data mining: theory and applications + Machine learning algorithms + Курс Е.Соколова "Машинное обучение" на ФКН ВШЭ
-
Video:
-
Article:
-
Homework:
-
Useful links:
- Articles:
- Feature Engineering and Feature Selection 🇬🇧
- Построение и отбор признаков:ru: 🇨🇳, Kaggle Notebook
- Homework:
- Useful links:
- Articles:
- Unsupervised Learning: Principal Component Analysis and Clustering 🇬🇧
- Обучение без учителя: PCA, кластеризация:ru:
- 🇨🇳
- Kaggle Notebook
- Homework:
- Useful resources:
- Как подобрать платье с помощью метода главных компонент
- Как работает метод главных компонент (PCA) на простом примере
- Интересные алгоритмы кластеризации, часть первая: Affinity propagation
- Интересные алгоритмы кластеризации, часть вторая: DBSCAN
- конспект "Обучение без учителя" в курсе Евгения Соколова
- Q&A: Making sense of principal component analysis, eigenvectors & eigenvalues
- Vowpal Wabbit: Learning with Gigabytes of Data 🇬🇧
- Time Series Analysis with Python, part 1 🇬🇧
-
Анализ временных рядов с помощью Python 🇷🇺 🇨🇳. Predicting future with Facebook Prophet, part 2 🇬🇧, 🇨🇳 Kaggle Notebooks: part1, part2
- Homework:
- Gradient Boosting 🇬🇧 - Градиентный бустинг:ru:, 🇨🇳, Kaggle Notebook
- Homework: