/OOBCurve

Random Forest OOB Curves for any performance measure of mlr

Primary LanguageR

OOBCurve

With the help of this package the out of bag learning curve for random forests can be created for any measure that is available in the mlr package.

Supported random forest packages are randomForest and ranger and trained models of these packages with the train function of mlr. Available measures can be looked up on the mlr tutorial page.

The main function is OOBCurve that calculates the out-of-bag curve depending on the number of trees. With the OOBCurvePars function out-of-bag curves can also be calculated for mtry, sample.fraction and min.node.size for the ranger package.

Installation:

devtools::install_github("PhilippPro/OOBCurve")

Examples:

library(mlr)
library(ranger)

# Classification
data = getTaskData(sonar.task)
sonar.task = makeClassifTask(data = data, target = "Class")
lrn = makeLearner("classif.ranger", keep.inbag = TRUE, par.vals = list(num.trees = 100))
mod = train(lrn, sonar.task)

# Alternatively use ranger directly
# mod = ranger(Class ~., data = data, num.trees = 100, keep.inbag = TRUE)
# Alternatively use randomForest
# mod = randomForest(Class ~., data = data, ntree = 100, keep.inbag = TRUE)

# Application of the main function
results = OOBCurve(mod, measures = list(mmce, auc, brier), task = sonar.task, data = data)
# Plot the generated results
plot(results$mmce, type = "l", ylab = "oob-mmce", xlab = "ntrees")
plot(results$auc, type = "l", ylab = "oob-auc", xlab = "ntrees")
plot(results$brier, type = "l", ylab = "oob-brier-score", xlab = "ntrees")

# Regression
data = getTaskData(bh.task)
bh.task = makeRegrTask(data = data, target = "medv")
lrn = makeLearner("regr.ranger", keep.inbag = TRUE, par.vals = list(num.trees = 100))
mod = train(lrn, bh.task)

# Application of the main function
results = OOBCurve(mod, measures = list(mse, mae, rsq), task = bh.task, data = data)
# Plot the generated results
plot(results$mse, type = "l", ylab = "oob-mse", xlab = "ntrees")
plot(results$mae, type = "l", ylab = "oob-mae", xlab = "ntrees")
plot(results$rsq, type = "l", ylab = "oob-mae", xlab = "ntrees")

# Use OOBCurvePars for OOBCurve of other hyperparameters
library(mlr)
task = sonar.task

lrn = makeLearner("classif.ranger", predict.type = "prob", num.trees = 1000)
results = OOBCurvePars(lrn, task, measures = list(auc))
plot(results$par.vals, results$performances$auc, type = "l", xlab = "mtry", ylab = "auc")

lrn = makeLearner("classif.ranger", predict.type = "prob", num.trees = 1000, replace = FALSE)
results = OOBCurvePars(lrn, task, pars = "sample.fraction", measures = list(mmce))
plot(results$par.vals, results$performances$mmce, type = "l", xlab = "sample.fraction", ylab = "mmce")

results = OOBCurvePars(lrn, task, pars = "min.node.size", measures = list(mmce))
plot(results$par.vals, results$performances$mmce, type = "l", xlab = "min.node.size", ylab = "mmce")