/plagiarism-detector

A model to detect plagiarism deployed with SageMaker

Primary LanguageJupyter Notebook

Plagiarism Project for Machine Learning Deployment

This repository contains code and associated files for deploying a plagiarism detector using AWS SageMaker.

Project Overview

In this project,I build a plagiarism detector that examines a text file and performs binary classification; labeling that file as either plagiarized or not, depending on how similar that text file is to a provided source text. Detecting plagiarism is an active area of research; the task is non-trivial and the differences between paraphrased answers and original work are often not so obvious.

This project will be broken down into three main notebooks:

Notebook 1: Data Exploration

  • Load in the corpus of plagiarism text data.
  • Explore the existing data features and the data distribution.
  • This first notebook is not required in your final project submission.

Notebook 2: Feature Engineering

  • Clean and pre-process the text data.
  • Define features for comparing the similarity of an answer text and a source text, and extract similarity features.
  • Select "good" features, by analyzing the correlations between different features.
  • Create train/test .csv files that hold the relevant features and class labels for train/test data points.

Notebook 3: Train and Deploy Your Model in SageMaker

  • Upload your train/test feature data to S3.
  • Define a binary classification model and a training script.
  • Train your model and deploy it using SageMaker.
  • Evaluate your deployed classifier.

Reference: