/horoscope

horoscope is an optimizer inspector for DBMS.

Primary LanguageGoApache License 2.0Apache-2.0

horoscope

FOSSA Status

horoscope is an optimizer inspector for DBMS.

Get Started

  1. Install

    • Install using script(recommend)
    curl --proto '=https' --tlsv1.2 -sSf https://raw.githubusercontent.com/chaos-mesh/horoscope/master/install.sh | sh

    Then open a new terminal and try horo -h.

    NAME:
       horoscope - An optimizer inspector for DBMS
    
    USAGE:
       horo [global options] command [command options] [arguments...]
    
    COMMANDS:
       init, i     initialize workload
       test        test the optimizer
       gen, g      Generate a dynamic bench scheme
       query, q    Execute a query
       hint, H     Explain hint of a query
       explain, e  Explain analyze a query
       info        Show database information
       index       Add indexes for tables
       card        test the cardinality estimations
       split, s    Split data into several slices
       load        Load data in a directory
       help, h     Shows a list of commands or help for one command
    
    GLOBAL OPTIONS:
       --dsn DSN, -d DSN          set DSN of target db (default: "root:@tcp(localhost:4000)/test?charset=utf8")
       --workload DIR, -w DIR     workload DIR of horo (default: "workload")
       --json, -j                 format log with json formatter (default: false)
       --file FILE, -f FILE       set FILE to store log
       --verbose LEVEL, -v LEVEL  set LEVEL of log: trace|debug|info|warn|error|fatal|panic (default: "info")
       --max-open-conns numbers   the max numbers of connections (default: 100)
       --max-idle-conns numbers   the max numbers of idle connections (default: 20)
       --max-lifetime seconds     the max seconds of connections lifetime (default: 10)
       --not-save                 do not save options (default: false)
       --help, -h                 show help (default: false)
    • Build from source
    git clone https://github.com/chaos-mesh/horoscope.git
    make

    Then try bin/horo -h.

  2. Initialize Workload

    Enter a clean directory and execute:

    horo init

    You may fail because there is no tidb or mysql server listening on localhost:4000. A custom data source name or workload directory is also supported:

    horo -d "root@tcp(172.20.1.1)/test" -w . init

    All options will be saved in horo.json of current directory:

    {
        "main": {
            "workload": ".",
            "dsn": "root@tcp(172.20.1.1:4000)/test",
            "json_formatter": false,
            "log_file": "",
            "verbose": "trace",
            "pool": {
                "max_open_conns": 100,
                "max_idle_conns": 20,
                "max_life_seconds": 10
            }
        },
        "bench": {
            "round": 1,
            "need_prepare": false,
            "disable_collect_card_error": false,
            "no_verify": false,
            "report_fmt": "table"
        },
        "card": {
            "columns": "",
            "type": "emq",
            "timeout": 0
        },
        "query": {
            "plan_id": 0
        },
        "generate": {
            "queries": 20,
            "and_op_weight": 3,
            "mode": "op-compose",
            "generator": {
                "max_tables": 3,
                "min_duration_threshold": 10000000,
                "limit": 100,
                "key_only": false,
                "unstable_order_by": false,
                "max_by_items": 3,
                "enable_key_map": false,
                "aggregate_weight": 0.5
            }
        },
        "index": {
            "max_indexes": 10,
            "compound_level": 1,
            "reserve_indexes": false
        },
        "info": {
            "table": ""
        },
        "load": {
            "data_source": ""
        },
        "split": {
            "group": "",
            "slices": 100,
            "batch_size": 100,
            "use_bit_array": false
        }
    }
  3. Generate Queries

    horo gen -c 3
  4. Start Benching

    horo test -p

Bench effectiveness

horo -w benchmark/tpch test -p -r 4 

Bench cardinality estimation

For example, measures the EMQ(exact match queries) row cnt error on customer.C_NAME for total 100 seconds.

horo card -columns 'customer.C_NAME' -type emq -timeout 100s

Summary report

There will generate a summary report after bench sub-command is finished.

+-----+-------------+------------------------+--------------------------+---------------+---------------------------------+--------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ID  | #PLAN SPACE | DEFAULT EXECUTION TIME | BEST PLAN EXECUTION TIME | EFFECTIVENESS | BETTER OPTIMAL PLANS            | ESTROW Q-ERROR                                                     | QUERY                                                                                                                                                                                                                                                                                                                                                                        |
+-----+-------------+------------------------+--------------------------+---------------+---------------------------------+--------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| q3  |          11 | 12061.0ms ±11%         | 5401.8ms ±19%            | 72.7%         | #6(44.8%),#10(66.4%),#11(47.3%) | count:3, median:1.0, 90th:7173270.0, 95th:7173270.0, max:7173270.0 | SELECT l_orderkey,sum(l_extendedprice*(1-l_discount)) AS revenue,o_orderdate,o_shippriority FROM ((customer) JOIN orders) JOIN lineitem WHERE c_mktsegment="AUTOMOBILE" AND c_custkey=o_custkey AND l_orderkey=o_orderkey AND o_orderdate<"1995-03-13" AND l_shipdate>"1995-03-13" GROUP BY l_orderkey,o_orderdate,o_shippriority ORDER BY revenue DESC,o_orderdate LIMIT 10 |
+-----+-------------+------------------------+--------------------------+---------------+---------------------------------+--------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
  • ID: query id
  • #PLAN SPACE: the plan space size of a query
  • DEFAULT EXECUTION TIME: the execution time of default plan, giving in the format of "Mean ±Diff", "Mean" is the mean value of round rounds, and "Diff" is the lower/upper bound of the mean value
  • BEST PLAN EXECUTION TIME: the execution time of the best plan
  • EFFECTIVENESS: the percent of the execution time of the default plan better than others on plan space
    • We use Pd to represent the default plan generated for the query, Pi as one of plan on plan space
    • If execution time(Pi) < 0.9 * execution time(Pd), Pi is a better plan
  • BETTER OPTIMAL PLANS: gives the better plan, each item is giving in the format of "nth_plan id(execution time / default execution time)"
  • ESTROW Q-ERROR: Base table row cnt estimation q-error for each query
  • QUERY: the query

Dataset

We integrate the SQL queries of TPCH, TPCDS, SSB, and JOB benchmarks on the repo, you can use go-tpc and tidb-bench to import the dataset.

For the JOB benchmark, join-order-benchmark is helpful.

Index selection fuzz

Refer to index selection fuzz

License

FOSSA Status