Piousur's Stars
yvenn-amara/ev-load-open-data
pg2455/KAN-Tutorial
Understanding Kolmogorov-Arnold Networks: A Tutorial Series on KAN using Toy Examples
IvanDrokin/torch-conv-kan
This project is dedicated to the implementation and research of Kolmogorov-Arnold convolutional networks. The repository includes implementations of 1D, 2D, and 3D convolutions with different kernels, ResNet-like and DenseNet-like models, training code based on accelerate/PyTorch, as well as scripts for experiments with CIFAR-10 and Tiny ImageNet.
mintisan/awesome-kan
A comprehensive collection of KAN(Kolmogorov-Arnold Network)-related resources, including libraries, projects, tutorials, papers, and more, for researchers and developers in the Kolmogorov-Arnold Network field.
ZiyaoLi/fast-kan
FastKAN: Very Fast Implementation of Kolmogorov-Arnold Networks (KAN)
SynodicMonth/ChebyKAN
Kolmogorov-Arnold Networks (KAN) using Chebyshev polynomials instead of B-splines.
GistNoesis/FourierKAN
Indoxer/LKAN
Variations of Kolmogorov-Arnold Networks
KindXiaoming/pykan
Kolmogorov Arnold Networks
Blealtan/efficient-kan
An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).
msu-coinlab/pymoo
NSGA2, NSGA3, R-NSGA3, MOEAD, Genetic Algorithms (GA), Differential Evolution (DE), CMAES, PSO
binary-husky/gpt_academic
为GPT/GLM等LLM大语言模型提供实用化交互接口,特别优化论文阅读/润色/写作体验,模块化设计,支持自定义快捷按钮&函数插件,支持Python和C++等项目剖析&自译解功能,PDF/LaTex论文翻译&总结功能,支持并行问询多种LLM模型,支持chatglm3等本地模型。接入通义千问, deepseekcoder, 讯飞星火, 文心一言, llama2, rwkv, claude2, moss等。
OpenGSL/OpenGSL
labmlai/annotated_deep_learning_paper_implementations
🧑🏫 60+ Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, sophia, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠
thu-ml/tianshou
An elegant PyTorch deep reinforcement learning library.
daili0015/ModelFeast
Pytorch model zoo for human, include all kinds of 2D CNN, 3D CNN, and CRNN
scutan90/DeepLearning-500-questions
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系scutjy2015@163.com 版权所有,违权必究 Tan 2018.06