/test_functions_for_optimization

This is a program that can calculate result of functions for optimization.

Primary LanguageMATLABMIT LicenseMIT

README: Test functions for optimization

This is a program that can calculate result of optimization functions. And this program is built on a program that is the paper's example code. The paper is called "The Whale Optimization Algorithm."

This is the website of author who published WOA: http://www.alimirjalili.com/WOA.html

Purpose

We only copied and modified 2 programs from original version:

  • Get_Functions_details.m
  • func_plot.m

The main purpose of these modification is extend multidimensional test functions.

Collected Functions

  1. Sphere Function (F1) $f(\textbf{x}) = f(x_1, x_2, ..., x_n) = {\sum_{i=1}^{n} x_i^{2}}$

  2. Schwefel Function 2.22 (F2) $f(\mathbf{x})=f(x_1, ..., x_n)=\sum_{i=1}^{n}|x_i|+\prod_{i=1}^{n}|x_i|$

  3. Schwefel Function 1.2 (F3)

  4. Schwefel Function 2.21 (F4) $f(\mathbf{x})=f(x_1, ..., x_n)=\max_{i=1,...,n}|x_i| $

  5. Rosenbrock Function (F5) $f(x, y)=\sum_{i=1}^{n}[b (x_{i+1} - x_i^2)^ 2 + (a - x_i)^2]$

  6. Step Function (F6)

  7. Quartic Function (F7) $f(\mathbf{x})=f(x_1,...,x_n)=\sum_{i=1}^{n}ix_i^4+\text{random}[0,1)$

  8. Schwefel Function (F8) $f(\textbf{x}) = f(x_1, x_2, ..., x_n) = 418.9829d -{\sum_{i=1}^{n} x_i sin(\sqrt{|x_i|})}$

  9. Rastrigin Function (F9) $f(x, y)=10n + \sum_{i=1}^{n}(x_i^2 - 10cos(2\pi x_i))$

  10. Ackley Function (F10) $f(\textbf{x}) = f(x_1, ..., x_n)= -a.exp(-b\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_i^2})-exp(\frac{1}{n}\sum_{i=1}^{n}cos(cx_i))+ a + exp(1)$

  11. Griewank Function (F11) $f(\textbf{x}) = f(x_1, ..., x_n) = 1 + \sum_{i=1}^{n} \frac{x_i^{2}}{4000} - \prod_{i=1}^{n}cos(\frac{x_i}{\sqrt{i}})$

  12. Penalized 1 Function (F12)

  13. Penalized 2 Function (F13)

  14. Shekel's Foxholes Function (F14)

  15. Kowalik's Function (F15)

  16. Six-Hump Camel-Back Function (F16)

  17. Branin Function (F17) $a=1, b=\frac{5.1}{4\pi ^2}, c=\frac{5}{\pi}, r=6, s = 10, t = \frac{1}{8\pi}$

  18. Goldstein-Price Function (F18) $f(x,y)=[1 + (x + y + 1)^2(19 − 14x+3x^2− 14y + 6xy + 3y^2)][30 + (2x − 3y)^2(18 − 32x + 12x^2 + 4y − 36xy + 27y^2)]$

  19. Hartman's Family (F19)

  20. Hartman's Family (F20)

  21. Shekel's Family (F21)

  22. Shekel's Family (F22)

  23. Shekel's Family (F23)

  24. Power Sum Function (F24) $dim = 4$ $b = [8, 18, 44, 114]$ $global\ minima\rightarrow x^=[1, 2, 2, 3]的所有排列組合$ $f(x^)=0$

  25. Zakharov Function (F25) $global\ minima\rightarrow x^=[0, ..., 0]$ $f(x^)=0$

  26. Matyas Function (F26) $global\ minima\rightarrow x^=[0, ..., 0]$ $f(x^)=0$

  27. Perm Function d, beta (F27)

  28. Vincent Function (F28) $f(x)=\sum_{i=1}^n \sin(10 \log(x))$

  29. Levy03 Function(F29) $f(x)=\sin^2(\pi y_1)+\sum_{i=1}^{n-1}(y_i-1)^2[1+10\sin^2(\pi y_{i+1})]+(y_n-1)^2$

  30. Qing Function (F30)

    • $f(x)=f(x_1,x_2,...,x_n)=\sum_{i=1}^{n}(x^2-i)^2$
    • n-dimension
    • $b=(\pm\sqrt{i},\pm\sqrt{i},...,\pm\sqrt{i})$
  31. (F31)

  32. (F32)

  33. (F33)

  34. Salomon Function (F34) $f(\mathbf x)=f(x_1, ..., x_n)=1-cos(2\pi\sqrt{\sum_{i=1}^{D}x_i^2})+0.1\sqrt{\sum_{i=1}^{D}x_i^2}$

  35. Styblinski-Tank Function (F35) $f(\textbf{x}) = f(x_1, ..., x_n)= \frac{1}{2}\sum_{i=1}^{n} (x_i^4 -16x_i^2+5x_i)$

  36. Xin-She Yang Function (F36) $f(\mathbf x)=f(x_1, ...,x_n)=\sum_{i=1}^{n}\epsilon_i|x_i|^i$

  37. Shubert Function (F37) $f(\mathbf{x})=f(x_1, ...,x_n)=\prod_{i=1}^{n}{\left(\sum_{j=1}^5{ cos((j+1)x_i+j)}\right)}$

  38. Levy Function (F38) $f(x)=sin^2(\pi w_1)+\sum^{d-1}_{i=1}(w_i-1)^2[1+10sin^2(\pi w_i+1)]+(w_d-1)^2[1+sin^2(2\pi w_d)]$, where $w_i=1+\frac{x_i-1}{4}$, for all $i=1,\dots,d$

  39. (F39)