iNLTK aims to provide out of the box support for various NLP tasks that an application developer might need for Indic languages.
pip install http://download.pytorch.org/whl/cpu/torch-1.0.0-cp36-cp36m-linux_x86_64.whl
pip install inltk
iNLTK runs on CPU, as is the desired behaviour for most of the Deep Learning models in production.
The first command above will install pytorch-cpu, which, as the name suggests, does not have cuda support.
Note: inltk is currently supported only on Linux with Python >= 3.6
Language | Code |
---|---|
Hindi | hi |
Punjabi | pa |
Sanskrit | sa |
Gujarati | gu |
Kannada | kn |
Malyalam | ml |
Nepali | ne |
Odia | or |
Marathi | mr |
Bengali | bn |
Setup the language
from inltk.inltk import setup
setup('<code-of-language>') // if you wanted to use hindi, then setup('hi')
Note: You need to run setup('<code-of-language>') when you use a language for the FIRST TIME ONLY. This will download all the necessary models required to do inference for that language.
Tokenize
from inltk.inltk import tokenize
tokenize(text ,'<code-of-language>') // where text is string in <code-of-language>
Predict Next 'n' words
from inltk.inltk import predict_next_words
predict_next_words(text , n, '<code-of-language>')
// text --> string in <code-of-language>
// n --> number of words you want to predict (integer)
Note: You can also pass a fourth parameter, randomness, to predict_next_words. It has a default value of 0.8
Identify language
from inltk.inltk import identify_language
identify_language(text)
// text --> string in one of the supported languages
Example:
>> identify_language('न्यायदर्शनम् भारतीयदर्शनेषु अन्यतमम्। वैदिकदर्शनेषु ')
'sanskrit'
Language | Repository | Perplexity of Language model | Wikipedia Articles Dataset | Classification accuracy | Classification Kappa score |
---|---|---|---|---|---|
Hindi | NLP for Hindi | ~36 | 55,000 articles | ~79 (News Classification) | ~30 (Movie Review Classification) |
Punjabi | NLP for Punjabi | ~13 | 44,000 articles | ~89 (News Classification) | ~60 (News Classification) |
Sanskrit | NLP for Sanskrit | ~6 | 22,273 articles | ~70 (Shloka Classification) | ~56 (Shloka Classification) |
Gujarati | NLP for Gujarati | ~34 | 31,913 articles | ~91 (News Classification) | ~85 (News Classification) |
Kannada | NLP for Kannada | ~70 | 32,997 articles | ~94 (News Classification) | ~90 (News Classification) |
Malyalam | NLP for Malyalam | ~26 | 12,388 articles | ~94 (News Classification) | ~91 (News Classification) |
Nepali | NLP for Nepali | ~32 | 38,757 articles | ~97 (News Classification) | ~96 (News Classification) |
Odia | NLP for Odia | ~27 | 17,781 articles | ~95 (News Classification) | ~92 (News Classification) |
Marathi | NLP for Marathi | ~18 | 85,537 articles | ~91 (News Classification) | ~84 (News Classification) |
Bengali | NLP for Bengali | ~41 | 72,374 articles | ~94 (News Classification) | ~92 (News Classification) |
Add a new language support for iNLTK
If you would like to add support for language of your own choice to iNLTK, please start with checking/raising a issue here
Please checkout the steps I'd mentioned here for Telugu to begin with. They should be almost similar for other languages as well.
Improving models/Using models for your own research
If you would like to take iNLTK's models and refine them with your own dataset or build your own custom models on top of it, please check out the repositories in the above table for the language of your choice. The repositories above contain links to datasets, pretrained models, classifiers and all of the code for that.
Shout out if you want to help :)
- Add Tamil and Telugu support
- Add NER for all the languages
- Work on a unified model for all the languages
Shout out if you want to lead :)
- Add Windows support