A deep learning model (CNN) build to classify Electron and Photon using matrices provided of the two classes.
The dataset was provided by the CERN. The files name used here are: 'SingleElectronPt50_IMGCROPS_n249k_RHv1.hdf5' and 'SinglePhotonPt50_IMGCROPS_n249k_RHv1.hdf5'.
-
For training set:
- Input: 39,8400 matrices of size 32x32 and 2 channels
- Target: 39,8400 values of 0 or 1
-
For validation set:
- Input: 49800 matrices of size 32x32 and 2 channels
- Target: 49800 values of 0 or 1
-
For test set:
- Input: 49800 matrices of size 32x32 and 2 channels
- Target: 49800 values of 0 or 1
The model and code description are mentioned in the table below:
DL Framework | Keras |
Keras version | 2.4.3 |
Libraries | Numpy, h5py |
Layers | Conv2D, Batchnormalization, Flatten, Dense |
Activation functions | ReLU, Sigmoid |
Optimizer | RMSprop |
Regularizer | Dropout |
Learning Rate | 0.0001 |
Batch size | 32 |
Epochs | 50 |
Loss function | Binary Crossentropy |
Metrics | Accuracy |
Dataset | Loss | Accuracy |
Train set | 0.5436 | 0.7344 |
Validation set | 0.5589 | 0.7235 |
Test set | 0.5693 | 0.7266 |