Electron-photon_Classification

A deep learning model (CNN) build to classify Electron and Photon using matrices provided of the two classes.

Dataset Description

The dataset was provided by the CERN. The files name used here are: 'SingleElectronPt50_IMGCROPS_n249k_RHv1.hdf5' and 'SinglePhotonPt50_IMGCROPS_n249k_RHv1.hdf5'.

  • For training set:

    • Input: 39,8400 matrices of size 32x32 and 2 channels
    • Target: 39,8400 values of 0 or 1
  • For validation set:

    • Input: 49800 matrices of size 32x32 and 2 channels
    • Target: 49800 values of 0 or 1
  • For test set:

    • Input: 49800 matrices of size 32x32 and 2 channels
    • Target: 49800 values of 0 or 1

Model Description

The model and code description are mentioned in the table below:

DL Framework Keras
Keras version 2.4.3
Libraries Numpy, h5py
Layers Conv2D, Batchnormalization, Flatten, Dense
Activation functions ReLU, Sigmoid
Optimizer RMSprop
Regularizer Dropout
Learning Rate 0.0001
Batch size 32
Epochs 50
Loss function Binary Crossentropy
Metrics Accuracy

Results

Dataset Loss Accuracy
Train set 0.5436 0.7344
Validation set 0.5589 0.7235
Test set 0.5693 0.7266