/LFFD-MNN-Raspberry-Pi-4

Face detection with MNN for Raspberry Pi 4

Primary LanguageC++BSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

LFFD face detection Raspberry Pi 4

output image

LFFD face detection with the MNN framework.

License

Paper: https://arxiv.org/pdf/1904.10633.pdf

Special made for a bare Raspberry Pi 4 see Q-engineering deep learning examples


Benchmark.

Model framework model size mAP Jetson Nano
2015 MHz
RPi 4 64-OS
1950 MHz
Ultra-Light-Fast ncnn slim-320 320x240 67.1 - FPS 26 FPS
Ultra-Light-Fast ncnn RFB-320 320x240 69.8 - FPS 23 FPS
Ultra-Light-Fast MNN slim-320 320x240 67.1 70 FPS 65 FPS
Ultra-Light-Fast MNN RFB-320 320x240 69.8 60 FPS 56 FPS
Ultra-Light-Fast OpenCV slim-320 320x240 67.1 48 FPS 40 FPS
Ultra-Light-Fast OpenCV RFB-320 320x240 69.8 43 FPS 35 FPS
Ultra-Light-Fast + Landmarks ncnn slim-320 320x240 67.1 50 FPS 24 FPS
LFFD ncnn 5 stage 320x240 88.6 16.4 FPS 4.85 FPS
LFFD ncnn 8 stage 320x240 88.6 11.7 FPS 3.45 FPS
LFFD MNN 5 stage 320x240 88.6 2.6 FPS 2.17 FPS
LFFD MNN 8 stage 320x240 88.6 1.8 FPS 1.49 FPS

Dependencies.

To run the application, you have to:


Installing the app.

To extract and run the network in Code::Blocks
$ mkdir MyDir
$ cd MyDir
$ wget https://github.com/Qengineering/LFFD-MNN-Raspberry-Pi-4/archive/refs/heads/main.zip
$ unzip -j master.zip
Remove master.zip, LICENSE and README.md as they are no longer needed.
$ rm master.zip
$ rm LICENSE
$ rm README.md

Your MyDir folder must now look like this:
images folder
Walks2.mp4
FaceDetection_LFFD_MNN.cpb
main.cpp
LFFD_MNN.h
LFFD_MNN.cpp
symbol_10_320_20L_5scales_v2_deploy.mnn
symbol_10_560_25L_8scales_v1_deploy.mnn


Running the app.

To run the application load the project file FaceDetection_LFFD_MNN.cbp in Code::Blocks.
Next, follow the instructions at Hands-On.

output image