The 2nd place solution of track1 (City-Scale Multi-Camera Vehicle Tracking) in the NVIDIA AI City Challenge from team 59 (BOE Technology Group Co., Ltd)
- OS: Ubuntu 20.04
- GPU Compute Capability: 7.5
- CUDA: 11.4.2
- Python: 3.8.10
- PyTorch: 1.10.0a0+3fd9dcf
- OpenCV: 4.5.3 (Compilation from the source code opencv-4.5.3, opencv_contrib-4.5.3)
- Ohter dependencies are in the
requirements.txt
You can run the command below to get our docker image that built based on the pytorch:21.09-py3
from NVIDIA NGC.
docker pull wangzhen95/deeplearning:v1.3
- Download the datasets AIC22_Track1_MTMC_Tracking
and put it under the folder
datasets
. - Download the pre-trained models from Google drive.
Make sure the data structure is like:
├── AIC22-MTMC
├── datasets
│ └── AIC22_Track1_MTMC_Tracking
├── detector
| └── yolov5_2022
| └── weights
| └── yolov5x6.pt
└── reid
└── reid_model
├── resnet101_ibn_a_2.pth
├── resnet101_ibn_a_3.pth
└── resnext101_ibn_a_2.pth
- Modify absolute paths in
config/aic_all.yml
,config/aic_reid1.yml
,config/aic_reid2.yml
,config/aic_reid3.yml
:
CHALLENGE_DATA_DIR: '/xxx/AIC22-MCVT/datasets/AIC22_Track1_MTMC_Tracking/'
DET_SOURCE_DIR: '/xxx/AIC22-MCVT/datasets/algorithm_results/detection/images/test/S06/'
DATA_DIR: '/xxx/AIC22-MCVT/datasets/algorithm_results/detect_merge/'
REID_SIZE_TEST: [384, 384] # 384, 256
ROI_DIR: '/xxx/AIC22-MCVT/datasets/AIC22_Track1_MTMC_Tracking/test/S06/'
CID_BIAS_DIR: '/xxx/AIC22-MCVT/datasets/AIC22_Track1_MTMC_Tracking/cam_timestamp/'
USE_RERANK: True
USE_FF: True
SCORE_THR: 0.1
MCMT_OUTPUT_TXT: 'track1.txt'
- Run the docker image:
docker run -it --gpus=all --ipc=host -v/xxx/AIC22-MCVT:/xxx/AIC22-MCVT -w /xxx/AIC22-MCVT wangzhen95/deeplearning:v1.3 /bin/bash
- Then run:
bash ./run_all.sh
The final results will locate at path ./matching/track1.txt
If you want rapidly reproduce our results, you can directly download algorithm_result
from our google drive.
-
Then put it in
AIC22-MCVT/datasets
and modify absolute paths inconfig/aic_all.yml
-
Run
bash ./run_mcvt.sh
The final results will locate at path ./matching/track1.txt
@InProceedings{Li_2022_CVPR,
author = {Li, Fei and Wang, Zhen and Nie, Ding and Zhang, Shiyi and Jiang, Xingqun and Zhao, Xingxing and Hu, Peng},
title = {Multi-Camera Vehicle Tracking System for AI City Challenge 2022},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2022},
pages = {3265-3273}
}