Nepali Word2Vec from scratch
Load the pretrained model
from gensim.models import Word2Vec
model_W2V = Word2Vec.load("nepaliW2V_5Million.model")
model.wv.most_similar('ठमेल')
->
[('लेकसाइड', 0.7085685729980469),
('जमल', 0.7031379342079163),
('बानेश्वर', 0.6600849628448486),
('सामाखुसी', 0.6546829342842102),
('न्युरोड', 0.6507934927940369),
('गोंगबु', 0.6498370170593262),
('बागबजार', 0.6398636102676392),
('कलं', 0.6395446062088013),
('हाइसन्चो\n', 0.6294294595718384),
('घण्टाघर', 0.6282877922058105)]
model_W2V.wv.most_similar('मनोरन्जन')
->
[('मनोरञ्जन', 0.7557299733161926),
('मजा', 0.66391921043396),
('मज्जा', 0.6295955777168274),
('आम्तसन्तुष्टि', 0.6150055527687073),
('मनोरंजन', 0.584694504737854),
('विश्राम', 0.5715169310569763),
('प्रवज्या', 0.5609654188156128),
('सन्न्यास', 0.5532158613204956),
('नभन्नू', 0.5427237749099731),
('थाप्नेआशिर्वाद', 0.5276983380317688)]
model.wv.similarity('फेसबूक', 'इन्स्टाग्राम')
->
0.8016524