NEPALIBERT is a state-of-the-art language model for Nepali based on the BERT model. The model is trained using a masked language modeling (MLM).
- clone the model repo
git lfs install
git clone https://huggingface.co/Rajan/NepaliBERT
- Loading the Tokenizer
from transformers import BertTokenizer
vocab_file_dir = './NepaliBERT/'
tokenizer = BertTokenizer.from_pretrained(vocab_file_dir,
strip_accents=False,
clean_text=False )
- Loading the model:
from transformers import BertForMaskedLM
model = BertForMaskedLM.from_pretrained('./NepaliBERT')
The easiest way to check whether our language model is learning anything interesting is via the FillMaskPipeline
.
Pipelines are simple wrappers around tokenizers and models, and the 'fill-mask' one will let you input a sequence containing a masked token (here, [mask]) and return a list of the most probable filled sequences, with their probabilities.
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer
)
Model Config:
{
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 6,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.7.0.dev0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 50000
}
Nepali-Bert was trained on 67 lakhs line of raw Nepali text data. The final data set was formed by combining A LARGE SCALE NEPALI TEXT CORPUS and Oscar dataset. Final version training datset after complete preprocessing contains each sentence at each line:
सोमबार उनको पुण्यतिथीको औँ दिन पुगेको छ ।
उनको काजक्रिया भने दिनमै सकिएको छ ।
आइतबार घरमा पुग्दा शुभचिन्तकको भीड उत्तिकै थियो ।
तर त्यो भिडका सबैको अनुहारको औंशीको रातझैं निभेको मैनबत्तीजस्तो थिए।
मनमा पीडा राखेर अनुहारमा कृतिम हाँसो छर्दै विद्या शुभचिन्तकको सम्मानमा जुटिरहेकी थिइन् ।