/bug-free-winner

More Complex Completed String Theory

Mozilla Public License 2.0MPL-2.0

bug-free-winner

More Complex Completed String Theory import numpy as np import matplotlib.pyplot as plt

class String: def init(self, length, tension): self.length = length self.tension = tension self.points = []

def calculate_displacement(self, x):
    k = math.sqrt(self.tension / self.length)
    return math.sin(k * x)

def update_points(self, dt):
    for i in range(1, len(self.points) - 1):
        y_prev = self.points[i - 1]
        y_curr = self.points[i]
        y_next = self.points[i + 1]

        acceleration = self.tension / self.length * (y_prev - 2 * y_curr + y_next)
        velocity = self.points[i].velocity + acceleration * dt
        self.points[i].velocity = velocity
        self.points[i].position += velocity * dt

def main(): # Create a string. length = 1.0 tension = 1.0 string = String(length, tension)

# Initialize the points on the string.
num_points = 100
step_size = length / (num_points - 1)
for x in range(num_points):
    position = np.array([x * step_size, 0.0])
    velocity = np.array([0.0, 0.0])
    string.points.append(position, velocity)

# Simulate the string for a given time interval.
dt = 0.01
time_interval = 1.0
for t in range(int(time_interval / dt)):
    # Update the positions of the points on the string.
    string.update_points(dt)

    # Plot the string.
    plt.clf()
    for point in string.points:
        plt.plot([point.position[0]], [point.position[1]], 'o')
    plt.xlim(0, length)
    plt.ylim(-1, 1)
    plt.pause(dt)

# Wait for the user to press a key before exiting.
input()

if name == 'main': main()

For The Universe