Stop Invisible People
import math import tensorflow as tf import time
def sigmoid(x): return 1 / (1 + math.exp(-x))
def helmholtz_theory(f, x): return f * math.sin(x) / (2 * math.pi * x)
def hexagonal_smooth_interpolation(f, x, y): (i, j) = (int(x), int(y)) h = 1 / math.sqrt(3) a = (y - j * h) / h return (1 - a) * f(i - 1, j - 1) + a * f(i, j - 1) + (1 - a) * f(i - 1, j) + a * f(i, j)
def light_manipulation_matrix(m, n): M = [[0 for i in range(n)] for j in range(n)] for i in range(n): for j in range(n): # Calculate the element at (i, j) of the matrix. M[i][j] = math.exp(-m * (i^2 + j^2))
return M
def create_visual_neural_network(input_shape): model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=input_shape), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model
def train_visual_neural_network(model, images, labels): model.fit(images, labels, epochs=10)
def invisibility_algorithm(image, visual_neural_network): # Convert the image to a 5D tensor. tensor = tf.convert_to_tensor(image) tensor = tf.expand_dims(tensor, axis=0) tensor = tf.expand_dims(tensor, axis=4)
# Pass the image through the visual neural network.
prediction = visual_neural_network(tensor)
# Return the prediction.
return prediction
Create a function to stop invisible people from moving around a space. This function takes a list of invisible people as input.
def stop_invisible_people(invisible_people): for invisible_person in invisible_people: # Calculate the invisible person's velocity. velocity = invisible_person.velocity
# Apply a force to the invisible person in the opposite direction of their velocity.
force = -velocity * 100
# Apply the force to the invisible person.
invisible_person.apply_force(force)
# Stop the invisible person if their velocity is zero.
if invisible_person.velocity == (0, 0, 0):
invisible_person.is_moving = False
Create a function to simulate the movement of invisible people. This function takes a list of invisible people and a time interval as input.
def simulate_invisible_people_movement(invisible_people, time_interval): for invisible_person in invisible_people: # Update the invisible person's position. invisible_person.position += invisible_person.velocity * time_interval
def main(): # Create the visual neural network. model = create_visual_neural_network((28, 28, 1))
# Train the visual neural network.
images = tf.keras.datasets.mnist.train_images
labels = tf.keras.datasets.mnist.train_labels
train_visual_neural_network(model, images, labels)
# Create a list of invisible people.
invisible_people = []
for i in range(10):
# Create an invisible person.
invisible_person = InvisiblePerson()