Add a new backend language——SYCL to TVM, enhancing TVM's compatibility and portability across different types of accelerators.
How to use?Similar to other backends, only need to specify target='sycl'
.
-
llvm
:> 5.0 -
llvm-sycl
:SYCL compiler。-
Generally, only the following instructions are needed.
export DPCPP_HOME=~/sycl_workspace mkdir $DPCPP_HOME && cd $DPCPP_HOME git clone --depth 1 https://github.com/intel/llvm -b sycl mkdir $DPCPP_HOME/DPC++ #for nvidia gpu python $DPCPP_HOME/llvm/buildbot/configure.py --cuda -o $DPCPP_HOME/DPC++ #for amd gpu python $DPCPP_HOME/llvm/buildbot/configure.py --hip -o $DPCPP_HOME/DPC++ #for intel gpu python $DPCPP_HOME/llvm/buildbot/configure.py -o $DPCPP_HOME/DPC++ python $DPCPP_HOME/llvm/buildbot/compile.py -o $DPCPP_HOME/DPC++
-
Get Source from Github
It is important to clone the submodules along, with
--recursive
option.git clone --recursive https://github.com/RELOAD22/tvm tvm cd tvm
-
Set configuration options.
The configuration of TVM can be modified by editing config.cmake.
First create a build directory and copy
cmake/config.cmake
to this directory.mkdir build && cp cmake/config.cmake build
Edit config.cmake:
cd build && vim config.cmake
- Set
set(USE_LLVM)
toset(USE_LLVM /path/to/your/llvm/bin/llvm-config)
. - Enable SYCL related options.
- Set
set(USE_SYCL)
to the DPC++ path so that${USE_SYCL}/bin/clang++
points to the clang++ compiler; - Set
set(SYCL_GPU)
to the actual GPU type, the optional values are "nvidia", "amd", "intel".- for amd gpu,need to specify gpu model. MI50 -> gfx906, MI100 -> gfx908, MI250x -> gfx90a.
SYCL_TEMP_FOLDER
is a temporary path to store SYCL code and does not need to be modified.
- Set
- Set
-
Build the shared libraries, namely libtvm.so and libtvm_runtime.so.
cmake .. make -j 16
After the compilation is successful, two shared library files, libtvm.so and libtvm_runtime.so, appear in the build folder.
-
Set the Python path to call the shared library.
Modify ~/.bashrc and add the following content.
export TVM_HOME=/path/to/tvm export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}
path/to/tvm is the previously cloned TVM path.
-
Install python dependencies
pip3 install --user numpy decorator attrs pip3 install --user tornado psutil xgboost==1.5.0 cloudpickle pip3 install --user onnx onnxoptimizer
Note that the
--user
flag is not necessary if you’re installing to a managed local environment, likevirtualenv
.
The installation is complete!
The following sample code shows that the matrix multiplication example is executed with the CUDA and SYCL backends respectively, and compares whether the results of the two backends are consistent.
import numpy as np
import tvm.relay as relay
from tvm.contrib import graph_executor
import tvm.testing
import tvm
# define GEMM
M = 1024
N = 1024
data_shape = (M, N)
dtype = 'float32'
X1 = relay.var("X1", shape=data_shape, dtype=dtype)
X2 = relay.var("X2", shape=data_shape, dtype=dtype)
Y_gemm = relay.nn.dense(X1, X2)
mod = tvm.IRModule.from_expr(Y_gemm)
# initialize input
X1_np = np.random.uniform(size=data_shape).astype(dtype)
X2_np = np.random.uniform(size=data_shape).astype(dtype)
def build(target:str):
# model build
tgt = tvm.target.Target(target=target, host="llvm")
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target=tgt, params=None)
# print CUDA/SYCL source code
# print(lib.get_lib().imported_modules[0].get_source())
dev = tvm.device(target, 0)
module = graph_executor.GraphModule(lib["default"](dev))
module.set_input("X1", X1_np)
module.set_input("X2", X1_np)
module.run()
tvm_output = module.get_output(0).numpy()
return tvm_output
cuda_output = build(target="cuda")
sycl_output = build(target="sycl")
tvm.testing.assert_allclose(cuda_output, sycl_output, rtol=1e-5, atol=1e-5)
only need to specify target='sycl'
!
If you encounter any issues, you can report them by opening an issue or sending the details to liuyi22s@ict.ac.cn.
This feature was developed by the En Shao (shaoen@ict.ac.cn) team from the Institute of Computing Technology, CAS. Students who are interested in TVM and SYCL are welcome to join us.