This repo holds the pytorch implementation of NABN:
Regularizing Deep Neural Networks for Medical Image Analysis with Augmented Batch Normalization.
Python 3.8.8
PyTorch==2.0.1
MONAI version: 1.1.0
- Clone this repo
git clone git@github.com:ROSENty/NABN.git
cd NABN
Before starting, datasets should be prepared.
Dataset name | Data source |
---|---|
OCT dataset | data |
chest X-ray dataset | data |
MSD Liver | data |
- Download and put these datasets in
data/
. - For image classification on OCT and chest X-ray datasets, replace the data path in text file
pneumonia_data/dataList
andzk_OCT_data/dataList
. - For image segmentation on MSD Liver dataset, replace the
data_root_dir
inUNet_MSD_liver.py
.
The folder structure of OCT dataset should be like
data/zk_OCT/
└── train
| └── CNV
| ├── CNV-5477211-11.jpeg
| ├── ...
| └── DME
| ├── DME-4643364-16.jpeg
| ├── ...
| └── DRUSEN
| ├── DRUSEN-3424668-31.jpeg
| ├── ...
| └── NORMAL
| ├── NORMAL-508852-11.jpeg
| ├── ...
└── test
| └── CNV
| ├── ...
| └── DME
| ├── ...
| └── DRUSEN
| ├── ...
| └── NORMAL
| ├── ...
The folder structure of chest X-ray dataset should be like
data/zk_pneumonia/
└── train
| └── PNEUMONIA
| ├── BACTERIA-198200-0002.jpeg
| ├── ...
| └── NORMAL
| ├── NORMAL-7103127-0001.jpeg
| ├── ...
└── test
| └── PNEUMONIA
| ├── ...
| └── NORMAL
| ├── ...
The folder structure of MSD Liver dataset should be like
data/MSD/Task03_Liver/
└── imagesTr
| ├── liver_0.nii.gz
| ├── ...
└── labelsTr
| ├── liver_0.nii.gz
| ├── ...
- For image classification on CIFAR-10, modify
net_name
inResNet_CIFAR.py
, and run
python ResNet_CIFAR.py
- For image classification on OCT and chest X-ray datasets, modify
net_name
anddataset
inResNet_OCT_pneumonia.py
, and run
python ResNet_OCT_pneumonia.py
- For image segmentation on MSD Liver dataset, modify
net_name
inUNet_MSD_liver.py
, and run
python UNet_MSD_liver.py