- Estimate the author of 12 controversial Federalist Papers using Bayes Decision
- Using KNN, Logistic Regression, SVM and K-Means methods to classify 500 multi-calss points with Gaussion distribution
- Simple recommendation system for Netflix's user, using Latent Factors Model and Neighborhood Methods
- Analyze data using the linear regression techniques (ridge regression and pth-order polynomial regression) to predict the miles per gallon a car will get using six quantities (features) about that car
- Predict spam using Naive Bayes Classifier and Logistic Regression
- 用贝叶斯决策的方法推测12篇存在争议的《联邦党人文集》的作者
- 分别用KNN、逻辑回归、SVM、K-Means方法对二维高斯分布的两类点(500个)进行分类并绘制分类边界线
- 分别用潜在因子算法(矩阵分解)、临近相似度算法,实现协同滤波,根据一个涉及影评者及其几部影片评分情况的字典,对用户进行电影推荐