/Facial-Expression-Recognition

fer2013 Competition Dataset is used to train the model which predicts facial expressions

Primary LanguageJupyter NotebookMIT LicenseMIT

Facial Expression Recognition

It is based on competition organised by kaggle in 2013:-
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/leaderboard

Top accuracies in that competitions were :-
71%
69%
68%

Here we have got 65% accuracy:-

Loss: 0.9379754525168954
Accuracy: 0.6540819169851225

Output:-

Screenshot from 2019-07-27 20-40-57

Architecture that we have used is :-

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 46, 46, 64)        640       
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 46, 46, 64)        36928     
_________________________________________________________________
batch_normalization_1 (Batch (None, 46, 46, 64)        256       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 23, 23, 64)        0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 23, 23, 64)        0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 23, 23, 128)       73856     
_________________________________________________________________
batch_normalization_2 (Batch (None, 23, 23, 128)       512       
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 23, 23, 128)       147584    
_________________________________________________________________
batch_normalization_3 (Batch (None, 23, 23, 128)       512       
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 11, 11, 128)       0         
_________________________________________________________________
dropout_2 (Dropout)          (None, 11, 11, 128)       0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 11, 11, 256)       295168    
_________________________________________________________________
batch_normalization_4 (Batch (None, 11, 11, 256)       1024      
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 11, 11, 256)       590080    
_________________________________________________________________
batch_normalization_5 (Batch (None, 11, 11, 256)       1024      
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 5, 5, 256)         0         
_________________________________________________________________
dropout_3 (Dropout)          (None, 5, 5, 256)         0         
_________________________________________________________________
conv2d_7 (Conv2D)            (None, 5, 5, 512)         1180160   
_________________________________________________________________
batch_normalization_6 (Batch (None, 5, 5, 512)         2048      
_________________________________________________________________
conv2d_8 (Conv2D)            (None, 5, 5, 512)         2359808   
_________________________________________________________________
batch_normalization_7 (Batch (None, 5, 5, 512)         2048      
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 2, 2, 512)         0         
_________________________________________________________________
dropout_4 (Dropout)          (None, 2, 2, 512)         0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 2048)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 512)               1049088   
_________________________________________________________________
dropout_5 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 256)               131328    
_________________________________________________________________
dropout_6 (Dropout)          (None, 256)               0         
_________________________________________________________________
dense_3 (Dense)              (None, 128)               32896     
_________________________________________________________________
dropout_7 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_4 (Dense)              (None, 7)                 903       
=================================================================
Total params: 5,905,863
Trainable params: 5,902,151
Non-trainable params: 3,712
____________________________