/DALLE-pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Primary LanguagePythonMIT LicenseMIT

DALL-E in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the generations.

Sid, Ben, and Aran over at Eleuther AI are working on DALL-E for Mesh Tensorflow! Please lend them a hand if you would like to see DALL-E trained on TPUs.

Yannic Kilcher's video

Before we replicate this, we can settle for Deep Daze or Big Sleep

Status

Hannu has managed to train a small 6 layer DALL-E on a dataset of just 2000 landscape images! (2048 visual tokens)

Install

$ pip install dalle-pytorch

Usage

Train VAE

import torch
from dalle_pytorch import DiscreteVAE

vae = DiscreteVAE(
    image_size = 256,
    num_layers = 3,          # number of downsamples - ex. 256 / (2 ** 3) = (32 x 32 feature map)
    num_tokens = 8192,       # number of visual tokens. in the paper, they used 8192, but could be smaller for downsized projects
    codebook_dim = 512,      # codebook dimension
    hidden_dim = 64,         # hidden dimension
    num_resnet_blocks = 1,   # number of resnet blocks
    temperature = 0.9,       # gumbel softmax temperature, the lower this is, the harder the discretization
    straight_through = False # straight-through for gumbel softmax. unclear if it is better one way or the other
)

images = torch.randn(4, 3, 256, 256)

loss = vae(images, return_recon_loss = True)
loss.backward()

# train with a lot of data to learn a good codebook

Train DALL-E with pretrained VAE from above

import torch
from dalle_pytorch import DiscreteVAE, DALLE

vae = DiscreteVAE(
    image_size = 256,
    num_layers = 3,
    num_tokens = 8192,
    codebook_dim = 1024,
    hidden_dim = 64,
    num_resnet_blocks = 1,
    temperature = 0.9
)

dalle = DALLE(
    dim = 1024,
    vae = vae,                  # automatically infer (1) image sequence length and (2) number of image tokens
    num_text_tokens = 10000,    # vocab size for text
    text_seq_len = 256,         # text sequence length
    depth = 12,                 # should aim to be 64
    heads = 16,                 # attention heads
    dim_head = 64,              # attention head dimension
    attn_dropout = 0.1,         # attention dropout
    ff_dropout = 0.1            # feedforward dropout
)

text = torch.randint(0, 10000, (4, 256))
images = torch.randn(4, 3, 256, 256)
mask = torch.ones_like(text).bool()

loss = dalle(text, images, mask = mask, return_loss = True)
loss.backward()

# do the above for a long time with a lot of data ... then

images = dalle.generate_images(text, mask = mask)
images.shape # (2, 3, 256, 256)

Ranking the generations

Train CLIP

import torch
from dalle_pytorch import CLIP

clip = CLIP(
    dim_text = 512,
    dim_image = 512,
    dim_latent = 512,
    num_text_tokens = 10000,
    text_enc_depth = 6,
    text_seq_len = 256,
    text_heads = 8,
    num_visual_tokens = 512,
    visual_enc_depth = 6,
    visual_image_size = 256,
    visual_patch_size = 32,
    visual_heads = 8
)

text = torch.randint(0, 10000, (4, 256))
images = torch.randn(4, 3, 256, 256)
mask = torch.ones_like(text).bool()

loss = clip(text, images, text_mask = mask, return_loss = True)
loss.backward()

To get the similarity scores from your trained Clipper, just do

images, scores = dalle.generate_images(text, mask = mask, clip = clip)

scores.shape # (2,)
images.shape # (2, 3, 256, 256)

# do your topk here, in paper they sampled 512 and chose top 32

Or you can just use the official CLIP model to rank the images from DALL-E

Scaling depth

In the blog post, they used 64 layers to achieve their results. I added reversible networks, from the Reformer paper, in order for users to attempt to scale depth at the cost of compute. Reversible networks allow you to scale to any depth at no memory cost, but a little over 2x compute cost (each layer is rerun on the backward pass).

Simply set the reversible keyword to True for the DALLE class

dalle = DALLE(
    dim = 1024,
    vae = vae,
    num_text_tokens = 10000,
    text_seq_len = 256,
    depth = 64,
    heads = 16,
    reversible = True  # <-- reversible networks https://arxiv.org/abs/2001.04451
)

Sparse Attention

You can also train with Microsoft Deepspeed's Sparse Attention, with any combination of dense and sparse attention that you'd like. However, you will have to endure the installation process.

First, you need to install Deepspeed with Sparse Attention

$ sh install_deepspeed.sh

Next, you need to install the pip package triton

$ pip install triton

If both of the above succeeded, now you can train with Sparse Attention!

dalle = DALLE(
    dim = 512,
    vae = vae,
    num_text_tokens = 10000,
    text_seq_len = 256,
    depth = 64,
    heads = 8,
    sparse_attn = (True, False) * 32  # interleave sparse and dense attention for 64 layers
)

Citations

@misc{unpublished2021dalle,
    title   = {DALL·E: Creating Images from Text},
    author  = {Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray},
    year    = {2021}
}
@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
@misc{kitaev2020reformer,
    title   = {Reformer: The Efficient Transformer},
    author  = {Nikita Kitaev and Łukasz Kaiser and Anselm Levskaya},
    year    = {2020},
    eprint  = {2001.04451},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}

Those who do not want to imitate anything, produce nothing. - Dali