/Linear_TxGraffiti

A python program that automatically produces mathematical conjectures in the field of graph theory.

Primary LanguagePythonMIT LicenseMIT

Linear_TxGraffiti

Automated conjecturing in graph theory using Python

What is it?

Linear TxGraffiti is the latest version of TxGraffiti, an automated conjecturing program which produces conjectures on simple and connected graphs.

Basic usage

Running the following from the command line will prompt the user to select a graph theory invariant to conjecture on:

python3 write_on_the_wall.py

You will then see the following options displayed in the terminal. Enter in the integer corresponding to the graph invariant you would like to TxGraffiti to conjecture on.

The invariants you may conjecture against are:

  1. domination_number

  2. total_domination_number

  3. connected_domination_number

  4. independence_number

  5. zero_forcing_number

  6. diameter

  7. radius

  8. order

  9. independent_domination_number

  10. chromatic_number

  11. matching_number

  12. min_maximal_matching_number

  13. triameter

  14. min_degree

  15. max_degree

  16. clique_number

  17. residue

  18. annihilation_number

  19. vertex_cover_number

  20. girth

  21. algebraic_connectivity

  22. k-slater-index

  23. k_residual_index

  24. randic_index

  25. augmented_randic_index

  26. harmonic_index

  27. atom_bond_connectivity_index

  28. sum_connectivity_index

  29. first_zagreb_index

  30. second_zagreb_index

  31. slater

  32. sub_total_domination_number

  33. CW_disparity

  34. closed_CW_disparity

  35. inverse_disparity

  36. closed_inverse_disparity

  37. average_vertex_disparity

  38. average_closed_vertex_disparity

  39. irregularity

  40. 2-residue

  41. average_degree

  42. paired_domination_number

  43. power_domination_number

  44. 2-power_domination_number

  45. 2-domination_number

  46. 2-forcing_number

  47. total_forcing_number

Why does it exist?

  • Motivate the study of previously unrelated graph theory invariants.
  • To assist mathematicians in producing novel research.

License

Released under the 3-Clause BSD license (see LICENSE.txt):

Copyright (C) 2021 Linear TxGraffiti Developers
Randy Davila <davilar@uhd.edu>