This repository contains a movie recommendation system built using TensorFlow Recommenders (TFRS). The system uses the MovieLens 100K dataset to build and evaluate retrieval and ranking models.
- Retrieval Model: A model to retrieve candidate movies for a given user.
- Ranking Model: A model to rank the retrieved candidate movies based on predicted user ratings.
- Two-Tower Architecture: Utilizes a two-tower architecture for computing user and movie embeddings.
- Brute Force Search: A simple retrieval mechanism using brute-force search for demonstration purposes.
- Python 3.7+
- TensorFlow 2.6+
- TensorFlow Recommenders
- TensorFlow Datasets
- NumPy
Run the main script to train the models and get movie recommendations:
python main.py
Retrieves a list of movie titles for a given user.
def retrieve_movies(index: tfrs.layers, user_id: str):
_, titles = index(np.array([user_id]))
titles = titles.numpy().astype(str).flatten()
return titles
Ranks a list of movie titles for a given user based on predicted ratings.
def rank_movies(titles: List[str], user_id: str, model: tfrs.models.Model):
ratings = {}
for movie_title in titles:
ratings[movie_title] = model(
{"user_id": np.array([user_id]), "movie_title": np.array([movie_title])}
)
for title, score in sorted(ratings.items(), key=lambda x: x[1], reverse=True):
print(f"{title}: {score}")
return ratings
Prints the ratings of movies in a sorted order.
def print_ratings(ratings: Dict[str, tf.Tensor]):
for title, score in sorted(ratings.items(), key=lambda x: x[1], reverse=True):
print(f"{title}: {score}")
A two-tower model for computing user and movie embeddings.
class TwoTowerModel(tf.keras.Model):
def __init__(self, unique_user_ids, unique_movie_titles):
super().__init__()
embedding_dimension = 32
self.user_embeddings = tf.keras.Sequential([
tf.keras.layers.StringLookup(vocabulary=unique_user_ids, mask_token=None),
tf.keras.layers.Embedding(len(unique_user_ids) + 1, embedding_dimension),
])
self.movie_embeddings = tf.keras.Sequential([
tf.keras.layers.StringLookup(vocabulary=unique_movie_titles, mask_token=None),
tf.keras.layers.Embedding(len(unique_movie_titles) + 1, embedding_dimension),
])
self.ratings = tf.keras.Sequential([
tf.keras.layers.Dense(256, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(1),
])
def call(self, inputs):
user_id, movie_title = inputs
user_embedding = self.user_embeddings(user_id)
movie_embedding = self.movie_embeddings(movie_title)
return self.ratings(tf.concat([user_embedding, movie_embedding], axis=1))
A model class for movie ranking.
class MovieLensRanking(tfrs.models.Model):
def __init__(self, unique_user_ids, unique_movie_titles):
super().__init__()
self.ranking_model: tf.keras.Model = TwoTowerModel(unique_user_ids, unique_movie_titles)
self.task: tf.keras.layers.Layer = tfrs.tasks.Ranking(
loss=tf.keras.losses.MeanSquaredError(),
metrics=[tf.keras.metrics.RootMeanSquaredError()],
)
def call(self, features: Dict[str, tf.Tensor]) -> tf.Tensor:
return self.ranking_model((features["user_id"], features["movie_title"]))
def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
labels = features.pop("user_rating")
rating_predictions = self(features)
return self.task(labels=labels, predictions=rating_predictions)
A model class for movie retrieval.
class MovieLensRetrieval(tfrs.models.Model):
def __init__(self, unique_user_ids, unique_movie_titles, movies):
super().__init__()
embedding_dimension = 32
self.user_model: tf.keras.Model = tf.keras.Sequential([
tf.keras.layers.StringLookup(vocabulary=unique_user_ids, mask_token=None),
tf.keras.layers.Embedding(len(unique_user_ids) + 1, embedding_dimension),
])
self.movie_model: tf.keras.Model = tf.keras.Sequential([
tf.keras.layers.StringLookup(vocabulary=unique_movie_titles, mask_token=None),
tf.keras.layers.Embedding(len(unique_movie_titles) + 1, embedding_dimension),
])
metrics = tfrs.metrics.FactorizedTopK(candidates=movies.batch(128).map(self.movie_model))
self.task: tf.keras.layers.Layer = tfrs.tasks.Retrieval(metrics=metrics)
def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
user_embeddings = self.user_model(features["user_id"])
positive_movie_embeddings = self.movie_model(features["movie_title"])
return self.task(user_embeddings, positive_movie_embeddings)
The main function to load data, train models, and get recommendations.
def main():
ratings = tfds.load("movielens/100k-ratings", split="train")
ratings = ratings.map(lambda x: {
"movie_title": x["movie_title"],
"user_id": x["user_id"],
"user_rating": x["user_rating"],
})
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
movie_titles = ratings.batch(100_000).map(lambda x: x["movie_title"])
user_ids = ratings.batch(100_000).map(lambda x: x["user_id"])
unique_movie_titles = np.unique(np.concatenate(list(movie_titles)))
unique_user_ids = np.unique(np.concatenate(list(user_ids)))
cached_train = train.shuffle(100_000).batch(4096).cache()
cached_test = test.batch(4096).cache()
movies = tfds.load("movielens/100k-movies", split="train")
movies = movies.map(lambda x: x["movie_title"])
ret = MovieLensRetrieval(unique_user_ids, unique_movie_titles, movies)
ret.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.1))
ret.fit(cached_train, epochs=3)
ret.evaluate(cached_test, return_dict=True)
model = MovieLensRanking(unique_user_ids, unique_movie_titles)
model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.1))
model.fit(cached_train, epochs=3)
model.evaluate(cached_test, return_dict=True)
index = tfrs.layers.factorized_top_k.BruteForce(ret.user_model)
index.index_from_dataset(movies.batch(100).map(lambda title: (title, ret.movie_model(title))))
user_id = "42"
titles = retrieve_movies(index, user_id)
ratings = rank_movies(titles, user_id, model)
print_ratings(ratings)