无调参$\lambda$
w_x = w_y = 0.001
无调参$\lambda$
无调参$\lambda$
NEx = NEy = 2
无调参$\lambda$
调参如下
wb = 20
wv = 1
wr = 1
trick: 可变参数,不收敛。
E: extended 扩维
m: modified 网络结构类似于ResNet
损失函数的权重参数可训练,定义如下:
self.wb = 200 * tf.Variable(tf.ones([1], dtype=tf.float32), dtype=tf.float32)
self.wr = 10 * tf.Variable(tf.ones([1], dtype=tf.float32), dtype=tf.float32)
E: extended 扩维
m: modified 网络结构类似于ResNet
V: VPINN
g: gPINN w_x = w_y = 0.001
self.wb = 200 * tf.Variable(tf.ones([1], dtype=tf.float64), dtype=tf.float64)
self.wr = 10 * tf.Variable(tf.ones([1], dtype=tf.float64), dtype=tf.float64)
self.wv = 10 * tf.Variable(tf.ones([1], dtype=tf.float64), dtype=tf.float64)